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ABSTRACT

This paper proposes a finite-state model for detecting har-
monic cycles as described by neo-Riemannian theorists. Given
a string of triads representing a harmonic analysis of a piece,
the task is to identify and label all substrings correspond-
ing to these cycles with high accuracy. The solution method
uses a noisy channel model implemented with weighted finite-
state transducers. On a dataset of four works by Franz Schu-
bert, our model predicted cycles in the same regions as cy-
cles in the ground truth with a precision of 0.18 and a re-
call of 1.0. The recalled cycles had an average edit distance
of 3.2 insertions or deletions from the ground truth cycles,
which average 6.4 labeled triads in length. We suggest ways
in which our model could be used to contribute to current
work in music theory, and be generalized to other music
pattern-finding applications.

1. INTRODUCTION

Though significant attention has been devoted to segmenta-
tion and labeling algorithms for discovering chords [14, 16,
19] and keys [4,16,18] in music scores, little work has been
done on automating higher-level music analysis. One reason
for the small body of research on this topic is that such anal-
ysis is highly subjective and relies heavily on musical intu-
ition. Another reason is that there are numerous methods of
analysis, which are often best suited to a particular corpus
of music. We take a step toward bridging this gap between
labeling and higher-level analysis by tackling the problem
of finding neo-Riemannian cycles in chord sequences using
a finite-state approach.

Neo-Riemannian music theory [17] posits that harmonies
are related by means of transformations, rather than a com-
mon tonic. The theory defines three primary transformations
P , L, and R that operate over the set of 24 major and minor
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triads (assuming enharmonic equivalence). Each transfor-
mation involves two triads that share two common tones.
P transforms a triad to its parallel major or minor triad, L
transforms a major triad to a minor triad whose root is four
semitones higher (and vice-versa), and R transforms a triad
to its relative major or minor triad. A cycle is generated by
obtaining a triad, and repeatedly applying an identical per-
mutation of either LP , RP , LRP , or LR at least until the
originating triad is reached again. These cycles partition the
harmonic space and give structure to certain musical works.

When neo-Riemannian theorists analyze a musical work,
they locate a passage and identify harmonies that “partici-
pate” in a cycle. There are several motivations for automat-
ing this process. The first is to attempt to formalize the task,
and in the process arrive at a more rigorous definition and
understanding of what constitutes a cycle—and by exten-
sion what musical judgements are made during an analysis.
The second is to facilitate a more comprehensive study of
these cycles than currently exists [3]. Computer-aided anal-
ysis could provide a critique of the theory itself, as well as
shed light on other music theoretic issues.

The existence of insertions and deletions presents chal-
lenges to accurately finding neo-Riemannian cycles. Sup-
pose Tn is the composition of n transformations along a cy-
cle. In theory, a cycle consists of a sequence of triads, such
that each successive triad is generated by a single T1 trans-
formation. In practice, inserted harmonies intermix with the
triads that participate in the theoretical cycle; and, triads
in the theoretical cycle can be missing from the observable
cycle due to the use of compound operations (Tn, where
n > 1), or because the cycle is incomplete. On the surface,
this problem may appear best solved by string matching
algorithms. Approximate string matching algorithms [12]
can handle insertions and deletions, and some methods have
been developed to search for multiple strings [2]. The main
problem with this approach is the representation of the search
strings. LP cycles, for instance, consist of all strings begin-
ning with LPLPLP or PLPLPL and continuing in like
fashion, of which there are many. LP cycles alone partition
the set of triads into four distinct cycles, each of which has
six distinct originating triads and two directions of motion.

399



Poster Session 3

In contrast, a finite-state model facilitates the concise en-
coding of a cycle using transformations. It also enables us to
represent transformational music theory in a visual and in-
tuitive way. Specifically, we propose a noisy channel model
to represent the task of finding an intended message (a cy-
cle) given an observation sequence (of chords). Our imple-
mentation of the model uses weighted finite-state transduc-
ers (WFSTs). [15] describes this method, as applied to the
realm of speech recognition.

Finite-state transducers (FSTs) are used extensively in
language and speech processing [9], with potential applica-
tions to music. WFSTs, which are used to represent proba-
bilistic finite-state machines in speech processing [11], could
be used similarly in audio music processing. [10] uses WF-
STs in the task of audio music identification as both an acous-
tic model and a compact language model. Drawing on ef-
forts in language processing that implement the noisy chan-
nel model with WFSTs [13], our model is a novel applica-
tion of this technique to symbolic music analysis.

The remainder of the paper is organized as follows. In
Section 2, we formalize the problem statement and present
the noisy channel model. In Section 3, we describe the input
data, as well as the training and evaluation methods for our
model. Finally, in Section 4 and Section 5, we present the
results of our experiment and discuss our conclusions.

2. THE MODEL

Our goal is to design a system that will accurately iden-
tify and label all strings of harmonies corresponding to neo-
Riemannian cycles in a music score. The input to the system
is a string of triad labels representing a harmonic analysis,
and the desired output is a version of that analysis with all
musically salient cycles demarcated and labeled.

2.1 Problem Statement

Let Σ1 be the alphabet consisting of symbols representing
the 24 enharmonically distinct major and minor triads, and
let Σ2 = {P,L,R}, the alphabet of basic neo-Riemannian
transformations. Also let Σ3 = {[, ]}, an alphabet of special
demarcation symbols outside of Σ1 and Σ2. Now, suppose
w is a string of symbols in Σ1, corresponding to a harmonic
analysis of a music score. The task is to identify exactly
the substrings of w that correspond to neo-Riemannian cy-
cles. These cycles should be labeled with the corresponding
transformations from Σ2 and bounded by symbols from Σ3.

2.2 Noisy Channel Model

We implement the proposed noisy channel model with a
cascade of WFSTs. Each component of the noisy channel
model—a theory model, a noisy channel, and an observa-
tion sequence—is encoded as an FST. For simplicity of im-

plementation, we reverse the direction of the model. Our re-
verse implementation is equivalent to the formal definition
due to the closure of FSTs under inversion.

Our implementation is the composition

Score ◦ ScoreEdit ◦ Cycles

of FSTs representing chords in the observation sequence,
chord edits in the noisy channel, and a model of (theoret-
ical) cycles, respectively. We use the OpenFst library [1]
implementation of FSTs and the Viterbi algorithm with the
tropical semiring to calculate the path of lowest cost from
Score to Cycles . This scheme is appropriate to our transi-
tions, which use weights rather than probabilities.

2.2.1 Score

Score is the FST over Σ1 that represents the observation
sequence. As shown in Figure 1, Score accepts and outputs
exactly the string corresponding to our input data with no
penalty. Its construction is simple to automate, since each
transition from the start state to the final state corresponds
to a triad in the input (in order). While we have not used this
capability, our model can accommodate multiple weighted
analyses of a piece, as shown in Figure 2.

Figure 1. The Score FST representing the score “C G C.”

Figure 2. An FST representing a probabilistic encoding of
two possible analyses of a hypothetical score.

2.2.2 ScoreEdit

ScoreEdit is the FST that represents the noisy channel (in
reverse). It transduces from Σ1 to Σ1 ∪Σ3 and is defined as

ScoreEdit = AddBrackets ◦ TriadsEdit , (1)

where AddBrackets and TriadsEdit are two smaller FSTs
described below.

AddBrackets , shown in Figure 3, is a formatting step
that demarcates cycles by inserting non-overlapping pairs
of brackets into the score. In order to prevent an excessive
number of cycles, we associate a cost B with the insertion
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of a bracket pair, denoted ε : [ /B, meaning “Do not read an
input chord. Add a bracket, at cost B.” A transition labeled
Σ1 : Σ1 / 0 is shorthand for all possible transitions labeled
σi : σi / 0 such that σi ∈ Σ1.

Figure 3. The AddBrackets FST.

Bracketing cycles in this way enables TriadsEdit to per-
form edits on the score that are sensitive to cycle boundaries.
TriadsEdit operates over Σ1 ∪ Σ3 and is defined as

TriadsEdit = OutsideEdit · (OpenBracket

· InsideEdit · ClosedBracket

·OutsideEdit)∗,

(2)

where OpenBracket and ClosedBracket are simple two-
state FSTs that recognize the languages {[} and {]}, re-
spectively. As shown in Figure 4, OutsideEdit is a single-
state FST over Σ1 that deletes any number of triads (with
cost X), and InsideEdit is a single-state FST over Σ1 that
deletes, inserts, and reads any number of triads (with costs
D, I , and 0, respectively). By construction of Equation (2),
OutsideEdit operates only outside of cycles, InsideEdit
operates only inside cycles, and zero or more cycles can oc-
cur anywhere in the score. We describe a method of training
these weights (costs) in Section 3.2.

Figure 4. The OutsideEdit (left) and InsideEdit (right)
FSTs.

2.2.3 Cycles

Cycles is the FST from Σ1 ∪ Σ3 to Σ2 ∪ Σ3. It transduces
neo-Riemannian transformations from the cycles and is de-
fined as

Cycles = (OpenBracket ·Map · ClosedBracket)∗

◦ (OpenBracket ·Definitions

· ClosedBracket)∗,

(3)

where Map and Definitions are the FSTs described below.

Map transduces from Σ1 to Σ2 and converts triads into
transformations. It has a start state with transitions to each
of the 24 other states corresponding to the major and minor
triads. Each state corresponding to a triad is a final state, and
has outgoing transitions to three other states according to P ,
L, and R transformations. Whenever Map in the start state
reads a triad corresponding to a particular state, it moves to
that state and outputs ε (with cost 0). From there, it is able
to read successive triads and output the appropriate transfor-
mation symbols. For clarity, Figure 5 shows only a portion
of Map corresponding to an LRP cycle, which contains 6
out of the 24 possible triads.

Figure 5. The Map FST (abbreviated).

Definitions is the FST over Σ2 that recognizes any de-
fined neo-Riemannian cycle. By construction, Equation (3)
ensures that one of those cycles occurs within each set of
brackets. Definitions is the union of all FSTs that represent
a desired cycle, like the one shown in Figure 6.

Figure 6. The LP Cycle FST. Each transition exiting the
start state is shorthand for the transitions and intermediary
(non-final) states necessary to transduce the labeled sub-
string to itself with zero weight.

2.3 Generalizability

Our model is highly generalizable, and could be adapted to
recognize various properties in a variety of music-theoretic
systems. One could define new edit operations by modifying
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ScoreEdit , incorporate other types of harmonies [6, 7] or
transformations [5,8], or change Map to accommodate other
conceptions of harmonic distance [20]. One could envision
using our model to detect cycles in other music features such
as rhythm (where the symbols might be durations rather than
neo-Riemannian transformations), and patterns other than
cycles.

3. EXPERIMENT

3.1 Input Data

We were able to obtain only a small quantity of input data
from scores in the desired corpus of late Romantic music
scores, to which neo-Riemannian analysis is typically ap-
plied. Neither a dataset of harmonic analyses, nor a reliable
way of automatically converting music scores into analyses
is presently available. Thus, the first author performed all
analyses manually prior to the automated analysis. Seventh
and other extended chords were reduced to their underlying
triads, and vertical sonorities without a prominent major or
minor triad identity were ignored.

Our input data are selections from four works by Franz
Schubert in which [17] identifies LP and RP cycles. [17]
analyzes two LP cycles in the exposition of the first move-
ment of the A major Piano Sonata, D. 959, one LP cycle in
the fourth movement of the G major Piano Sonata, D. 894,
one LP cycle in the coda of the first movement of the E-
flat major Piano Trio, D. 929, and one RP cycle in the first
movement of the C major String Quintet, D. 956. Since the
focus of this experiment isLP andRP cycles, we define the
Definitions FST to recognize either one. Given the small
size of our dataset, it was not necessary to perform the usual
determinization and minimization algorithms to make the
FSTs in our model time- and space-efficient, respectively.

In order to describe and classify the cycles that comprise
our ground truth, we identify properties of cycles that are
visible to our model. Let p be the number of triads in an
observable cycle that are labeled with transformations, let o
be the number of triads that are not labeled (insertions), and
let n = o+p be the overall length. Also, letm be the number
of deletions, and let l be the length of the shortest complete
theoretical cycle of the type being labeled (e.g. l = 7 forLP
cycles). Note that p + m = l, except for extended cycles,
where p + m > l. Table 1 shows o, m, p, and l for each of
the cycles in our input data.

We also calculate two quantities in Table 1 that help us
to classify cycles. o

o+p is the proportion of insertions rela-
tive to the observable length, and m

m+p is the proportion of
deletions relative to the length of the corresponding theoret-
ical cycle. We will use these two quantities, also graphed in
Figure 8, to explain our results.

Piece Measures o m p l o
o+p

m
m+p

D. 959 (ex. 1) 28–36 9 4 5 7 0.64 0.44

D. 959 (ex. 2) 82–103 24 0 9 7 0.73 0

D. 894 154–160 21 3 4 7 0.84 0.43

D. 956 233–250 9 2 7 9 0.56 0.22

D. 929 585–612 9 0 7 7 0.56 0

Table 1. Cycles in the ground truth and their properties.

3.2 Training Method

Training our model consists of setting four parameters: B,
D,X , and I , which are the costs of bracketing cycles, delet-
ing chords inside cycles, deleting chords outside of cycles,
and inserting chords, respectively (described in Section 2.2).
While systems can be trained with musically-informed rules [19],
we calculate weights empirically. Our method involves set-
ting up a system of linear inequalities by determining the
behavior of our system over isolated strings of n triads.

To privilege labeling a cycle of n triads over deletion, we
use equations of the form

B + oD +mI < nX. (4)

To privilege deletion, we would simply reverse the inequal-
ity. We generate instances of Equation (4) from a ground
truth labeling of a score by selecting each cycle and calcu-
lating o, m, and n. In order to prevent our system from
arbitrarily extending cycles it labels, we also require that

D > X. (5)

We solve the resulting system by minimizing the objective
function B +D + I +X .

3.3 Evaluation

The desired performance metric should measure the success
of both segmentation and labeling of cycles.

We propose an evaluation method that uses global string
alignment applied separately to each region in the score with
one or more overlapping cycles in either the ground truth or
the prediction. Since a string of transformations does not
uniquely determine the underlying triads, we do not com-
pare those strings. Instead, we calculate the edit distance
between the string of triads labeled with transformations
(i.e. not insertions) in the prediction with the corresponding
string in the ground truth. Allowable edit distance opera-
tions are insertion and deletion, like in our model. If a cycle
does not exist in one labeling, the edit distance is simply the
cost of deleting all symbols in the other string. This metric
has the property that segmentation errors are proportional to
p and not o; it is a measure of divergence in transformational
content rather than overall observable content.
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Piece 1 2 3 4 5 6 7 8 9 10 11 Sn Sp St

D. 959 5 4 6 0 5 4 16 20
D. 894 8 10 6 8 10 22 32
D. 956 6 5 9 7 0 7 6 5 0 45 45
D. 929 6 5 6 7 8 7 7 8 4 7 2 2 65 67

Table 2. Alignment costs for each piece, broken down by
region. Bold formatting indicates that the region contains a
cycle in the ground truth.

The evaluation score St of a prediction is equal to the
sum of all edit distances calculated as just described, i.e.
St = Sn + Sp, where Sn is the sum of all edit distance op-
erations on regions with a cycle in the ground truth, and Sp

is likewise defined on all other aligned regions. Sn and Sp

measure in some sense the amount of “false-negativeness”
and “false-positiveness,” respectively, in a prediction.

We use leave-one-out cross-validation on our four pieces
of input data. Training for validation on D. 959, D. 956,
and D. 929 each yielded weights I = 1, B = 1, D =
1.0065, and X = 1.0055, and training for validation on
D. 894 yielded weights I = 1, B = 1, D = 1.003, and
X = 1.002. Table 2 shows a breakdown of performance by
aligned region for each score.

4. RESULTS

In our experiment, we used the cycles analyzed by [17] as
our “ground truth.” If we define successful retrieval of a
cycle in the ground truth as prediction of a cycle in the
same aligned region, our model achieved precision and re-
call scores of 0.18 and 1.0. (The model predicted a cycle in
every aligned region containing a cycle in the ground truth.)
The cycles recalled from the ground truth, on average, had
length p = 6.4 and alignment score 3.2.

Our choice of ground truth cycles impacted our preci-
sion score and led to many predicted cycles in regions not
analyzed. Viewed as strings of harmonies, these predicted
cycles are difficult to distinguish from cycles in the ground
truth. In particular, our model predicted an RP cycle in
measures 304–329 (aligned region 7) of D. 929 with dimen-
sions o = 8, m = 2, p = 7, and l = 9, which almost exactly
match the dimensions of the ground truth RP cycle in D.
956 (see Table 1). We arrive at the conclusion that either
the ground truth is incomplete, or that other factors affect
theorists’ decisions on what constitutes a cycle.

Our model also labels cycles on a more detailed level
than is often done in music analysis. In practice, theorists
often describe transformations acting on a cluster of chords
with a prominent harmonic identity, rather than a particu-
lar chord with that identity. By contrast, our model always
labels specific chords with transformations. Our evaluation
measure does not penalize this type of over-specification.

Aligned region 5 of D. 956, which received one of two per-
fect alignment scores, illustrates this point. In translating the
analysis in [17] to the ground truth labeling, the first author
selected the second D major chord shown in Figure 7 for
participation in the theoretical cycle based on cadential and
inversional information in the score. Our model selected the
first D major chord instead, but was not penalized by con-
struction of our evaluation method.

Figure 7. Aligned region 5 of D. 956 (mm. 233–250), with
ground truth labels (curved connectors) and predicted labels
(elbow connectors).

While our model predicted a cycle in each aligned re-
gion containing a cycle in the ground truth, misalignments
of varying severity also occurred. The predicted cycles in
aligned region 11 of D. 929, aligned region 2 of D. 959,
and aligned region 2 of D. 894 received increasingly large
evaluation scores. These increasing scores reflect the costs
of identifying an extended cycle, a cycle with the desired
harmonic content but opposite direction, and a cycle with
altogether different harmonic content, respectively.

In order to understand why these cycles posed challenges
to our model, consider Figure 8. Distance from the origin
correlates with the alignment scores of these three cycles.
In addition, there seems to be a direct link between distance
from the x-axis (corresponding to the relative number of
deletions) and poor performance. Tellingly, the three cycles
with the best scores (aligned region 4 of D. 959, aligned
region 5 of D. 956, and aligned region 11 of D. 929) are
located on or near the x-axis, but not particularly near the
y-axis, suggesting that the model is able to handle many in-
serted triads, so long as there are few deletions. The two
remaining cycles in the figure, located furthest from the x-
axis, were more costly to align. Each consists of strictly
T2 transformations, resulting in many deletions. The finite-
state model is not in general well-equipped to reward regu-
larity in patterns, and in this case was not able to recognize
regularity of motion within a cycle.

To view the complete set of musical excerpts and ex-
tracted harmonic analyses, please visit http://www.
jonathanbragg.com/ismir2011.

5. CONCLUSION

This paper presents the essential design and performance
of a finite-state approach to harmonic cycle detection. The
model performed well on the task at hand: with access to
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Figure 8. Plot of proportion of deletions vs. proportion of
insertions (data from Table 1).

very little music feature data, it predicted all cycles in the
ground truth, some with very high accuracy, and suggested
other potentially viable cycles. As more harmonic analysis
data becomes available, it will be possible to do more exten-
sive testing of the model, and to incorporate other features.
In its current form, the model could be used as a tool for
theorists, to propose potential cycles which might be ana-
lyzed and catalogued, and ultimately contribute to a better
understanding of cycles and neo-Riemannian theory. This
approach is highly generalizable and can be applied to other
kinds of pattern matching in music.
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