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ABSTRACT

Recently the ‘Million Song Dataset’, containing audio fea-
tures and metadata for one million songs, was made avail-
able. In this paper, we build a convolutional network that is
then trained to perform artist recognition, genre recognition
and key detection. The network is tailored to summarize the
audio features over musically significant timescales. It is
infeasible to train the network on all available data in a su-
pervised fashion, so we use unsupervised pretraining to be
able to harness the entire dataset: we train a convolutional
deep belief network on all data, and then use the learnt pa-
rameters to initialize a convolutional multilayer perceptron
with the same architecture. The MLP is then trained on a
labeled subset of the data for each task. We also train the
same MLP with randomly initialized weights. We find that
our convolutional approach improves accuracy for the genre
recognition and artist recognition tasks. Unsupervised pre-
training improves convergence speed in all cases. For artist
recognition it improves accuracy as well.

1. INTRODUCTION

Recently, the Laboratory for the Recognition and Organiza-
tion of Speech and Audio (LabROSA) 1 of Columbia Uni-
versity released a large dataset of music consisting of audio
features and metadata for one million songs, aptly named
the ‘Million Song Dataset’ [4].

Because the dataset is almost completely labeled, it lends
itself well for developing and testing classification methods.
In this paper, we attempt to classify songs according to their
genre, artist and key. To this end, we design a convolutional
network that summarizes the input features over musically
significant timescales.

1 http://labrosa.ee.columbia.edu/
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Developing techniques that can harness the entire dataset
is quite a challenge. We use the majority of the data in an
unsupervised learning phase, where the network learns to
model the audio features. Due to its size, the dataset is very
suitable for unsupervised learning. This is followed by a
supervised training phase, where only a small task-specific
subset of the dataset is used to train a discriminative model
using the same network. We have investigated the gains that
can be achieved by using a convolutional architecture, and
the additional gains that unsupervised pretraining can offer.

This paper is structured as follows: the layout of the
dataset is detailed in Section 2. An introduction to convo-
lutional deep belief networks (DBNs) follows in Section 3.
Section 4 describes the classification tasks that were used to
evaluate the model. Section 5 provides an overview of our
approach, and Section 6 describes our experimental setup.
Results are given in Section 7.

2. DATASET

2.1 The Million Song Dataset

The Million Song Dataset is a collection of all the infor-
mation that is available through The Echo Nest API 2 for
one million popular songs. This means that a lot of the
data was automatically derived from musical audio signals,
which should be taken into account when it is used for learn-
ing. Metadata available includes artist and album informa-
tion and the year of the performance. Musical information
derived directly from the audio signal includes the key, the
mode and the time signature. Next to this, some other de-
rived features like “energy” and “danceability” and user-
assigned tags are also available.

The audio features in the dataset were obtained by first
dividing each song into so-called segments. Segment bound-
aries roughly correspond to onsets of notes or other musical
events. For each segment, a feature vector consisting of 12
timbre and 12 chroma components was computed, as well
as the maximal loudness within the segment.

The chroma features describe the pitch content of the mu-
sic. Each of the 12 components corresponds to a pitch class

2 http://the.echonest.com/
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(ranging from C to B). Their values indicate the relative
presence of the pitches, with the most prominent one al-
ways having a value of 1. All components lie within the
interval [0, 1]. The timbre features are the coefficients of 12
basis functions which capture certain timbral characteristics
like brightness, flatness and attack. They are unbounded and
roughly centered around 0.

Unfortunately, the automated methods used to build the
dataset lead to the presence of a relatively large number of
duplicate tracks. When the dataset is divided into a train and
a test set in a naive fashion, some examples might occur in
both subsets, which is undesirable. Luckily, the authors of
the dataset have published an extensive list of known dupli-
cates. Using this list, over 78,000 tracks were removed.

2.2 Beat-aligned Features

Although the segmentation that was performed to compute
the audio features has its merits, we are more interested in
beat-aligned features such as those used in [3]. The beat
is the basic unit of time in music. Chord progressions and
changes in musical texture tend to occur on the beat, and
seeing as it is one of our goals to encode these characteristics
in higher level features, it makes sense to use beat-aligned
features as a starting point.

The features from the dataset can be converted to beat-
aligned features using the rhythm information that is also
supplied. The segments are mapped to beats, and then the
feature vectors for all segments corresponding to the same
beat are averaged.

3. CONVOLUTIONAL DEEP BELIEF NETWORKS

3.1 Deep Learning

A fairly recent trend in machine learning is the use of deep
architectures, with many layers of processing [1]. Tradition-
ally, such architectures were not very popular because they
were very difficult to train. In 2006, Hinton demonstrated
a fast training method for deep belief networks (DBNs), a
particular type of deep models [11]. This led to a surge in
popularity of these models, establishing deep learning as a
new area of research.

The popularity of deep architectures can be attributed at
least partially to their biological plausibility; humans typi-
cally use hierarchies and abstractions to organize their thoughts
and evidence of hierarchical structures has been found in the
brain (e.g. in the visual cortex [1]).

Deep belief networks are probabilistic generative mod-
els, which are obtained by stacking multiple restricted Boltz-
mann machines (RBMs) on top of eachother.

3.2 Restricted Boltzmann Machines

A restricted Boltzmann machine is a probabilistic model
consisting of a set of visible units and a set of hidden units
which form a bipartite graph; there are no connections be-
tween pairs of visible units or pairs of hidden units, but ev-
ery visible unit is connected to every hidden unit. They are a
kind of undirected graphical model. A schematic represen-
tation is shown in Figure 1.

The visible units of an RBM correspond to the input vari-
ables of the data that is to be modelled. In image processing,
each visible unit typically represents one pixel. The hidden
units capture correlations between visible units and can be
seen as feature detectors. The model learns the underlying
distribution of the data by representing it in terms of features
that are derived from the data itself.

Each connection has a particular weight, and each of the
units can also have a bias. These trainable parameters can be
learnt from data. Unfortunately, maximum likelihood learn-
ing is intractable in RBMs. Instead, the contrastive diver-
gence learning rule, which is an approximation to maximum
likelihood learning, can be used [9].

Figure 1. Schematic representation of an RBM, with the
visible units at the bottom and the hidden units at the top.
Note how there are no lateral connections between two vis-
ible or two hidden units.

RBMs typically consist of binary units, which can be on
or off. This makes sense for the hidden units, which are
feature detectors, but it is not always the best choice for the
visible units. It is also possible to construct an RBM for
continuous data, with Gaussian visible units.

3.3 Deep Belief Networks

A deep belief network (DBN) consists of multiple RBMs
stacked on top of eachother, with the hidden units of RBM i
being used as visible units of RBM i + 1. The bottom RBM
learns a shallow model of the data. The next one then learns
to model the hidden units of the first, and so on: higher-level
features are extracted from lower-level features. Each RBM
is trained separately; learning would be considerably harder
if all layers would be trained jointly using backpropagation.

Top-level features learnt by DBNs can be used to train
discriminative models. In this fashion, they have been ap-
plied succesfully to image processing problems like hand-
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writing recognition [11] and object recognition [12], but
also to classification of audio signals [14], and even music
classification [8]. For a detailed technical overview of deep
learning, RBMs and DBNs, see [1].

3.4 Convolutional Networks

A convolutional networks is a type of network model with
constrained weights. There are two kinds of constraints:

• locality: each unit in layer i is only connected to a group
of units in layer i− 1 that is local;

• translation invariance: each unit in layer i is replicated
such that every local group of units in layer i − 1 is con-
nected to a unit in layer i with the same weight configu-
ration (weight sharing). A set of units in layer i with the
same weight configuration is called a feature map.

This configuration is visualized in Figure 2.
In layered network models, we typically wish for higher

layers to represent higher levels of abstraction. Weight con-
straints in convolutional networks would make it hard for
neurons in higher layers to learn high-level abstractions; they
only see a small local portion of the input, whereas high-
level abstractions usually involve long-range dependencies.
To increase the scope of higher layer neurons, convolutional
layers are alternated with max-pooling layers.

Max-pooling is a downsampling operation: units in layer
i are grouped into small non-overlapping blocks. Each block
is aggregated into a single unit in layer i + 1, with as its
activation the maximal activation over all units in the block.
This operation reduces the dimensionality of the data by a
factor equal to the size of the blocks. This layout is also
shown in Figure 2.

It’s clear that inserting max-pooling layers between con-
volutional layers increases the scope of higher layer neu-
rons. Furthermore, it also makes the model invariant to
some small displacements of the input data, increasing its
robustness.

layer i + 1

layer i

layer i− 1

Figure 2. A max-pooling layer (i + 1) stacked on top of a
convolutional layer (i). Note that layer i− 1 and layer i are
not fully connected. The connections are drawn in different
styles to indicate which weights are shared.

Convolutional networks are typically used for image pro-
cessing, where stronger correlations between nearby pix-

els and the translation invariance of image features are ex-
ploited to significantly reduce the number of parameters.
Audio signals have similar characteristics, although the lo-
cality is temporal rather than spatial.

Deep belief networks can be made convolutional by ap-
plying the described weight constraints in the RBM layers,
and inserting max-pooling layers between the RBM layers.
Convolutional deep belief networks have been have been
used for object recognition [13, 16], and to extract features
from audio signals, for speech recognition as well as for mu-
sic classification [14].

3.5 Supervised Finetuning

As mentioned earlier, we can use top-level DBN features
as input for a classification method; common choices are
support vector machines or logistic regression. We can train
a logistic regression classifier by gradient descent, using the
DBN to preprocess the input data.

It is also possible to convert a DBN into a convolutional
multilayer perceptron (MLP). We can simply reuse the weights
of the interconnections and the biases of the hidden units.
We then stack a logistic regression layer on top of this MLP
and train the whole model jointly using gradient descent.
This approach is called supervised finetuning: the DBN weights
that were initially learnt to model the data are now finetuned
for a specific discriminative task using backpropagation.

4. TASKS

We performed several classification tasks on music tracks:
artist recognition, genre recognition and key detection. La-
beled datasets for each of the tasks were extracted from the
Million Song Dataset. Three (partially overlapping) subsets
were selected:

• artist recognition: the 50 artists with the most tracks in
the dataset were identified, and 100 tracks of each artist
were selected (5000 tracks in total);

• genre recognition: 20 common genres were selected man-
ually using tags 3 that are included in the dataset: folk,
punk, metal, jazz, country, blues, classical, rnb, new wave,
world, soul, latin, dance, reggae, techno, funk, rap, hip
hop, rock and pop. For each genre, 250 tracks were se-
lected (5000 tracks in total);

• key detection: the key information in the dataset was au-
tomatically annotated, so it may be unreliable. To avoid
problems with incorrect labels, we selected 250 tracks
with a high key confidence for each of the 12 possible
keys (3000 tracks in total).

The subsets were then divided into balanced train, evalu-
ation and test sets according to a 80% / 10% / 10% split.

3 The dataset provides different kinds of tags. We used the MusicBrainz
tags because these are the most reliable [4].
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5. APPROACH

We built a convolutional network, designed to aggregate the
features from the dataset on musically significant timescales.
Properties that are typical for certain genres, artists or keys,
should become apparent at this level. We used the same net-
work to tackle all three classification tasks.

The network was first trained as a DBN on the entire Mil-
lion Song Dataset 4 . We then trained and evaluated the net-
work as an MLP with backpropagation, for each of the clas-
sification tasks. We used the Theano Python library to im-
plement all experiments, so they could be GPU-accelerated
easily [2].

5.1 Network Layout

The input of the network consists of beat-aligned chroma
and timbre features for a given track, so there are 24 input
dimensions in total. The maximal loudness component was
not used, as the timbre features already include a loudness
component. Note that tracks vary considerably in length, but
the convolutional nature of the network allows us to cope
easily with variable-length input.

First, we separated the chroma and timbre features into
two input layers (layers 0a and 0b). Then, separate convo-
lutional layers were stacked onto both input layers (layers
1a and 1b). These layers learn features with a width of 8
beats. It was observed that most of the tracks in the dataset
have a 4/4 time signature (which is also true for contempo-
rary music in general). This means that there are 4 beats in
a bar. The width of the features was chosen to be two bars,
seeing as this is the timescale on which chord progressions
and changes in musical texture are most likely to occur. We
used 100 feature maps for each layer.

By using separate layers, the network does not learn cor-
relations between chroma and timbre features at this level.
This allows it to focus on learning correlations between tim-
bre components and between chroma components separately;
such correlations are likely to be easier to discover. A simi-
lar approach was used in [15] to learn features over multiple
modalities.

The output of the convolutional layers was then max-
pooled in the time dimension with a pool size of 4 (layers 2a
and 2b). Once again, we made use of the observation that
most of the tracks in the dataset have a 4/4 time signature,
with 4 beats per bar; the output of the max-pooling layer is
invariant to all displacements of less than one bar (up to 3
beats).

The max-pooled outputs of both layers were then con-
catenated, yielding 200 features with a granularity of ap-
proximately 1 bar. We stacked another convolutional layer
with 100 feature maps on top of this, which learns features

4 Excluding known duplicates and tracks used for validation and testing
for any of the tasks.

with a width of 8 bars (layer 3). This width was selected
because musical themes are often contained within a length
of 8 bars. Correlations between timbre and chroma compo-
nents can now be discovered as well.

Finally, another max-pooling layer with a pool size of 4
was added (layer 4). The features obtained from this layer
have a granularity of 4 bars and a scope of roughly 8 bars.
To perform the classification tasks, a fifth layer perform-
ing logistic regression was added. To classify a track, each
timestep of the layer 4 is classified separately, and the result-
ing posterior distributions over the class labels are averaged.
The most probable class is then selected. The layout of the
network is shown in Figure 3.

beats

bars

themes

5: logistic regression

4: max-pooling

3: convolution

2a: max-pooling

1a: convolution

0a: chroma features

2b: max-pooling

1b: convolution

0b: timbre features12 12

100 100

100 100

100

100

Figure 3. The network layout. The number of dimensions
or feature maps for each layer is indicated on the side. The
layers have also been grouped according to the timescale on
which they operate.

5.2 Unsupervised Pretraining

It would be impossible to train the network in a supervised
fashion with the entire Million Song Dataset. This is this
computationally infeasible, and on top of that the provided
labels are not perfect; some are missing, others are incorrect
or have a very low confidence.

As mentioned before, we pretrained the network using
timbre and chroma features for all tracks in the dataset. We
used the beat-aligned chroma features directly as inputs to
the network; the timbre features were first normalized per
track to have zero mean and unit variance.

To train the RBM in layer 1b (timbre), we use Gaussian
visible units, which allow for the continuous input data to
be modeled. For layer 1a (chroma), we used binary units.
Technically, this is not possible because the chroma features
are continuous values that lie between 0 and 1. However,
we can interpret these values as probabilities and sample
from them, yielding binary input data. In practice, we do
not perform this sampling explicitly, but we use the mean
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field approximation (see Section 5.2.2). Learning is much
more stable for binary units than for Gaussian units, so be-
ing able to use binary units is a significant advantage.

We used single step constrastive divergence (CD-1) ev-
erywhere. A learning rate of 0.005 was used to train the
RBMs with binary visible units; a learning rate of 0.0001
was used for the RBM with Gaussian visible units. We per-
formed only a single run through the entire dataset; perform-
ing multiple epochs turned out to be unnecessary (and would
require too much computation time).

5.2.1 Sparsity

We modified the hidden unit activations according to [7] to
encourage them to be sparse. Convolutional RBMs are over-
complete models, so adding a sparsity penalty term ensures
that the learnt feature representations are useful [14]. In ad-
dition, sparse activations are essential for max-pooling to
work properly [5, 17].

We used a sparsity target of 0.05 for layers 1a and 1b,
and a target of 0.1 for layer 3. A relative sparsity cost of 0.1
was used in all cases.

5.2.2 Mean Field Approximation

Where possible, we eliminated sampling steps by using the
mean field approximation. This eliminates sampling noise
and often positively affects convergence. We used this for
the chroma inputs and in the contrastive divergence algo-
rithm, except when updating the hidden states, as recom-
mended in [10]. Interpreting continuous input values that
are constrained to a finite interval as input probabilities to
train an RBM is common practice [9].

6. EXPERIMENTS

We trained the network as a convolutional MLP for each of
the classification tasks described in Section 4: first with ran-
dom initialization of the weights, and then using the weights
learnt by the DBN (supervised finetuning), yielding six ex-
periments. We tried learning rates of 0.05, 0.005 and 0.0005
and trained for 30 epochs. To initialize the random weights,
we sampled them from a Gaussian distribution with a mean
and variance corresponding to those of the weights learnt by
the DBN. This ensures that the results are comparable.

We also trained a naive Bayes classifier and a logistic re-
gression classifier that operate on windows of features from
the dataset, resulting in six more experiments. We chose a
window size of 32 beats (8 bars), which is comparable to
the timescale on which the convolutional network operates.
For the logistic regression classifier, we tried learning rates
of 0.005, 0.0005, 5 · 10−5, 5 · 10−6 and 5 · 10−7 and also
trained for 30 epochs. Both the chroma features and the tim-
bre features were normalized to have a zero mean and a unit
variance in this case.

For each of the twelve experiments, we determined the
optimal parameters using the validation sets, and then com-
puted the classification accuracies on the test sets using these
parameters. The results can be found in Table 1.

7. RESULTS

The first thing to notice is that the key detection task seems
to be fairly simple. The achieved accuracies are much higher
than for the other tasks, and even the simplest technique per-
forms quite well. Windowed logistic regression performs
best. There are multiple possible explanations for this:

• the property we are trying to determine is quite ‘low-
level’. The key of a track is in a very close relationship
with the chroma features and how they evolve through
time. Relating the genre or the artist to these features is
much more difficult;

• to construct the dataset for this task, we selected tracks
with a high key confidence. This implies that the al-
gorithm used to annotate key information in the Million
Song Dataset could identify the key of these tracks with
relative ease. It would make sense that the same is true
for our models. Unfortunately, there is no way to verify
this, except by constructing a manually labeled dataset.

For the other tasks, the convolutional network has a defi-
nite edge over the other approaches: the classification accu-
racies increase significantly.

The gains obtained with pretraining on the other hand
seem to be much more modest; this is only advantageous for
the artist recognition task, which is quite difficult because it
is a 50-way classification problem. The utility of pretraining
for this task could stem from the fact that the number of
tracks per class available for training (80) is much lower
compared to the other tasks (200). Indeed, it has been shown
that gains from unsupervised pretraining are maximal when
the amount of available labeled training data is limited [6].
This data scarcity is inherent to the task at hand - few artists
have a discography with more than 100 tracks.

The optimal learning rate for key detection with the con-
volutional network differs depending on whether pretrain-
ing is used or not. This is because the training for this task
without pretraining did not converge after 30 epochs using
a learning rate of 0.005. This indicates that convergence
is faster when pretraining is used. To investigate this, we
also compared classification accuracies obtained after only
20 training epochs, which can be found in the bottom half
of Table 1. We now observe that pretraining is beneficial for
all tasks. This confirms that it improves convergence speed.

8. CONCLUSION AND FUTURE WORK

We have trained a convolutional network on beat-aligned
timbre and chroma features obtained from music audio data
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genre recognition artist recognition key detection
naive Bayes 10.02% 6.80% 73.74%

30 epochs
windowed logistic regression 25.90% (5 · 10−6) 32.13% (5 · 10−5) 86.53% (5 · 10−5)
conv. MLP without pretraining 29.52% (0.005) 34.34% (0.05) 83.84% (0.05)
conv. MLP with pretraining 29.12% (0.005) 35.74% (0.05) 83.84% (0.005)

20 epochs
conv. MLP without pretraining 24.90% (0.05) 33.94% (0.05) 83.84% (0.05)
conv. MLP with pretraining 27.31% (0.005) 35.54% (0.05) 84.51% (0.005)

Table 1. Test accuracies and corresponding learning rates for each of the classification tasks, with and without pretraining.

to perform a number of classification tasks. The convolu-
tional nature of the network allowed us to summarize these
features over musically significant timescales, leading to an
increase in accuracy. We used unsupervised pretraining with
a very large dataset, which improved convergence speed and,
for the artist recognition task, classification accuracy. It is
clear that the ability to harness a large amount of unlabeled
data is advantageous for tasks where the amount of available
training data is limited.

In future work, we would like to refine a couple of as-
pects about the architecture of the network, such as the way
the input features are modeled in the lower layers: other
types of visible units might be more suitable. We will also
investigate different ways to encourage the RBMs to learn
interesting features, besides the sparsity penalty term that
we used for these experiments.
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