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ABSTRACT

Short-term and long-term descriptors constitute comple-
mentary pieces of information in the analysis of audio sig-
nals. However, because they are extracted over different
time horizons, it is difficult to exploit them concurrently in
a fully effective manner. In this paper we propose a novel
temporal fusion method that leverages the effectiveness of
a given set of features by efficiently combining multi-scale
versions of them. This fusion is achieved using a boost-
ing technique exploiting trees as weak classifiers, which has
the advantage of performing an embedded feature selection.
We apply our algorithm to two standard classification tasks,
namely musical instrument recognition and multi-tag clas-
sification. Our experiments indicate that the multi-scale ap-
proach is able to select different features at different scales
and significantly outperforms the mono-scale systems in
terms of classification performance.

1. INTRODUCTION

Automatic classification of audio signals is one of the main
research areas in the field of music information retrieval.
This task consists in assigning audio signals to one or more
categories (classes), according to a chosen criterion, which
can be the musical instrument played, the speaker gender,
the corresponding musical genre, etc. Classification can
be very useful for many applications scenarios, such as
database annotation, stream segmentation, and smart orga-
nization and search of large libraries.

Most audio classification systems represent the signal by
splitting it into fixed-duration frames, from which several
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features are computed to be used by a learner. Given such
training examples, the learner will then build a rule for deter-
mining the relevant class of any previously unseen example,
only by considering its features. However, using frames of
the same length limits the duration of the observable phe-
nomena. While describing signal characteristics at different
scales has become frequent in image processing [15], few
audio-related studies use several temporal horizons for de-
scribing the signal.

The purpose of the present work is to setup a classifi-
cation scheme that leverages the discrimination power of
the features considered, by extracting them at different time
scales and using a boosting technique to combine them effi-
ciently. To precisely demonstrate the advantage brought by
the use of different scales, we keep the same representation
at every scale (i.e. compute the same features at different
scales), but our system is flexible enough to handle different
types of descriptions through varying scales.

In the remainder of this paper, we first briefly review au-
dio classification algorithms and related temporal integra-
tion techniques in Section 2. Then we describe our multi-
scale classification method (Section 3), and in Section 4, we
present our experiments and results.

2. RELATED WORK

Audio classification makes use of machine learning to build
rules for predicting the relevant class of a previously un-
known audio excerpt. A good overview of the music clas-
sification problems and most common techniques can be
found in [5].

First, the signal is described by a set of features. Among
the most common, we can name: Fourier transform coeffi-
cients, mel-frequency cepstral coefficients (MFCC), delta-
MFCC, chromagrams or zero-crossing rates [17]. Most of
the time, several features are computed from a single frame,
then they are concatenated into one high-dimensional fea-
ture vector.

In order to map the obtained description to class labels,

663



Poster Session 6

various classifiers have been considered in previous works.
The two most used ones are probably Gaussian mixture
models (GMM) [16] and Support vector machines (SVM)
[11]. Alternatively, several recent works have made use of
boosting, a meta-classifier training several complementary
versions of other learners [3, 4].

Most systems choose to represent the signal using fixed-
length frames. However, the concepts behind each class
may be conveyed by signal properties that have heteroge-
neous temporal dynamics. Therefore, potentially useful de-
scriptors may need to be built at various time scales. Hence,
a problem occurs when one tries to fuse such descriptions,
because simple concatenation of the features (as done in
most works) is infeasible.

Early integration [9] can be used to solve this problem,
simply by integrating the features computed over shorter
frames, over the duration of the longest analysis window.
This synchronization of all descriptors allows for their con-
catenation, but the temporal precision of the shorter-term
features is reduced. Therefore, potentially useful high-
frequency content lost due to the integration low-pass fil-
tering effect.

In [2], the authors fuse MFCC, along with chroma, web
documents analysis and Last.fm tags 1 , by means of kernel
fusion. The boosting algorithm can also be used for classi-
fier fusion [18]. In [1], fusion by boosting is applied to audio
data, but all representations are done at the same scale: one
vector per song. We can also cite [12], where the authors
discriminate speech/nonspeech segments with features built
using a constant-Q filterbank. In this kind of transform, the
filters do not usually have the same temporal support. How-
ever, once the feature vector is built, no information is kept
about the temporal support.

Furthermore, studies pointed out that representing the
signal on different scales, and jointly considering all scales
during the whole learning process, may lead to a more com-
plete analysis of the signal than using a single temporal hori-
zon [14]. Indeed, short-term features can precisely capture
short events and quick changes in the signal. On the other
hand, long-term features are able to represent larger phe-
nomena, but with a poor temporal resolution. Using features
built over several scales should then allow for describing
jointly more diverse aspects of the signal.

3. PROPOSED METHOD

We propose a novel boosting scheme to achieve multi-scale
information fusion at a decision level. The boosting al-
gorithm trains a weak classifier several times, putting the
emphasis on different examples among iterations. As men-

1 Last.fm is an online music listening service, where any user can asso-
ciate any tag to a song. These tags can be automatically retrieved through
an API.

tioned in Section 2, boosting has already been adapted for
classifier fusion. This fusion can be achieved by simply con-
sidering several weak classifiers in parallel, and selecting,
at each iteration, the best performing one. This constitutes
a convenient framework for heterogeneous classifier fusion
because it does not make any assumption on the nature of
the weak classifiers. It considers only their decisions on the
training examples.

3.1 Multi-scale representation

In this work, we evaluate the merit of a multi-scale feature
representation compared to the classical mono-scale repre-
sentation. In order to clearly identify the usefulness of the
multi-scale approach compared to the mono-scale one, the
same set of features is used at every scale. Further details
on the features used are given in Section 4.

The multi-scale feature representation is built as follows.
First, the sequence of descriptors is computed at the finer
scale, and then the other ones are obtained by temporal in-
tegration, which allows for fast feature computation. We
integrate feature vectors by temporal averaging.

3.2 Boosting trees

For every scale s, our weak learner Hs is a CART 2 classi-
fication tree [7] using Ls-sample length frames. Trees are
convenient, as they can be trained fast, and have proven ef-
ficient when boosted [3]. Furthermore, they present the ad-
vantage of performing feature selection during their train-
ing.

Decision trees are built from a root containing all training
examples. At each node, the data is split in two (or possibly
more) children nodes, only using a threshold on a particular
bin of the feature vector. The bin and threshold values are
chosen so that the two children nodes are the “purest” pos-
sible (i.e. the probabilities of the two classes are the furthest
possible from 0.5). Here, we use binary trees, with the Gini
impurity measure. The depth is fixed in advance, and we
separately experiment depths 1 (which is also referred to as
a stump) and 2.

3.3 Decision ranges

At each boosting iteration, the boosting algorithm chooses
the weak classifier with the lowest weighted error rate. Mak-
ing a fair comparison between the classifiers implies that the
decisions, for each of them, must be taken on the same au-
dio segments. Because the frames of the different classifiers
do not describe the same portions of signal, we have to set
the length on which the decisions are taken, for all scales.

For this purpose we introduce decision ranges. These
ranges represent the portions of signal on which the deci-
sions of the weak classifiers are taken. Figure 1 shows how

2 Classification And Regression Tree.
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a decision range i, in gray, includes the feature frames from
the different scales. Each xni,s is a description vector, where
s is the temporal scale level, n is the index of the frame
within the decision range, and i represents the surrounding
decision frame. We consider a frame to belong to range i
if its center is included in the temporal bounds of i. In the
following, we will denote by xi the set of all frames from
all scales, that belong to range i.

Time

Feature scale s

. . .

. . .

. . .

. . .

Decision range i

x1
i,S

x1
i,1 xN1

i,1
. . .

xn
i,s

Figure 1. A decision range (in gray), covering a different
number of frames on different scales.

Figure 1 also shows that a decision range cannot be
shorter than the frames at the largest scale. Otherwise,
the largest scale could be favored because it uses a greater
amount of signal. On the contrary, decision ranges longer
than Lmax would decrease the number of training examples.
This is why each range spans exactly Lmax samples.

3.4 Core algorithm

The whole learning procedure is detailed in Algorithm 1.
We start from the examples xni,s, with class labels yi. The

labels neither depend on s nor n, but only on the current
song which comprises segment i, as we are assuming class
labels always span the whole song duration. Thus, although
final decisions may be taken at a song-level, they are ob-
tained by combining intermediate decisions taken on seg-
ments of a song, referred to as decision ranges, based on a
corresponding set of feature-vector instances xni,s.

Each of these decision ranges gets an associated weight,
representing the relative focus of the algorithm during the
current iteration. In the beginning, all weights are equal for
ranges belonging to the same class.

At each iteration r, the weights wr,i are normalized so
they sum to 1, before the weak classifiers hr,s (the CART
trees) are trained. These trainings must take into account
the weights of the examples. For each scale, the decision on
range i is a majority vote on all frames belonging to i. Us-
ing these decisions, we can compute an error rate for every
scale. The scale ŝr with the lowest error rate is then selected
for the final strong decision, with weight αr. After that, the

Algorithm 1 Adaboost for multi-scale classifier fusion.
Input: Annotated examples from all scales (xni,s, yi),

1 ≤ i ≤ I, 1 ≤ s ≤ S, 1 ≤ n ≤ Ns
Input: Weak learnersHs
w1,i ←− 1

2m ,
1
2l , resp. for yi = 0, 1, where m and l

are the number of negative and positive examples, respec-
tively

for r = 1, . . . , R do
wr,i ←− wr,iPI

j=1 wr,j
// Normalize the weights

Train classifiers hr,s with the models Hs and weights
wr,i

// Decisions of hr,s on the observation ranges i

dr,s,i =
{

1 if 1
Ns

∑Ns

n=1 hr,s(x
n
i,s) > 0.5

0 otherwise
,

// Compute weighted error rate
εr,s ←−

∑
i wr,i |dr,s,i − yi|

// Best scale
ŝr ←− argmins εr,s
εr ←− εr,ŝr

hr ←−
∑
n hr,ŝr

// Coefficient associated with hr
αr ←− log 1

βr
, where βr = εr

1−εr,

// Update the example weights
for all ranges i do

// test whether dr,ŝr,i = yi
if xi well classified then
wr+1,i ←− wr,i βr

else
wr+1,i ←− wr,i

end if
end for

end for

Output: H(x) =
∑
r αrhr(x)
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weights of the correctly classified examples are decreased,
thus reducing their importance for future iterations.

The final output H(x) is used during the testing phase as
follows. When tagging a range i, one decision is taken for
each component r by applying hr to the observations from
corresponding scale (xni,ŝr

). Then, H(xi) is a weighted sum
of the hr(xi), as stated at the end of Algorithm 1. Finally,
the global decision for a whole song a is a standard late
integration over all decision ranges within a. It is done by
taking the thresholded mean of the H(xi):

Da =
{

1 if meani∈aH(xi) > t
0 otherwise (1)

4. EXPERIMENTS

To show the usefulness of our multi-scale system compared
to mono-scale systems, we perform experiments on two
datasets, corresponding to two usual tasks is audio classi-
fication. We first validate our method on a musical instru-
ment recognition database. Then, we test our system perfor-
mance for multi-tag classification on the now well-known
CAL500 [16]. The two experiments are done with different
sets of features and different scale choices.

4.1 Musical instrument recognition

The task of instrument recognition presents the advantages
of being well defined and strongly related to the audio con-
tent. This is why we run the first experiment on a database
containing a set of solo real-music performances, featuring
six instruments: Piano, Guitar, Bassoon, Oboe, Cello and
Violin. The database contains 73 files (31 for training, 42
for testing), totalling 449 minutes of music. For each instru-
ment, we have between 28 and 39 minutes of performance
in the training set, and between 22 and 64 minutes in the test
set.

From this data, we extract a selection of 30 feature coeffi-
cients obtained by applying Inertia Ratio Maximisation [13]
to an initial set of cepstral, spectral, perceptual and temporal
features used in a previous work [10].

We extract these descriptors at four distinct scales. The
shortest one (S1) has an analysis window of L1 = 320 ms,
which is approximately the duration of an eighth note at
90 BPM. The other scales (S2, S3 and S4) have windows
of lengths 2L1, 4L1 and 8L1. The frames do not overlap.

On this data, we trained our systems with 500 boosting
iterations, using trees of depth 1.

Each example is annotated with one of the six instru-
ments. We decompose this multiclass problem into six
distinct bi-class problems, following the one-versus-all ap-
proach. During the test phase, all decisions are integrated
to the largest scale 8L1 = 2.6 s, and the most probable in-
strument is chosen. For the mono-scale systems with scales

shorter than 8L1, the late integration is done by summing
the classifier output on the frames within the considered de-
cision range.

With these predictions on the test set, we calculate the
recognition rate as:

R = meani 1H(xi)=yi
(2)

4.2 Multi-tag classification using CAL500

For this experiment, we use the CAL500 database [16],
a database containing 500 pop songs, annotated by non-
experts through a survey. Each song has been annotated by
at least three people. We keep the 61 tags used in [2]. These
tags describe different properties of the whole songs, such
as: mood, genre, instrument, etc.

Tests are conducted using 10-fold cross-validation, with
450 songs used for training, and 50 songs for testing. The
test sets are not overlapping between the different folds. For
complexity reduction, we only use 30s of each song: ex-
tracted between instants 30 s and 60 s.

The features we use for describing each frame of signal
are: the 15 psychoacoustic-related features recommended
in [19] (loudness, tonal dissonance, . . . ), completed by the
common first 13 MFCC (dropping the energy), chroma,
zero-crossing rate, and spectral spread, skewness and kur-
tosis.

We have chosen five different scales: frames covering 2,
3.3, 5.5, 9 and 15 s of signal, with 50% overlap. A prelim-
inary experiment indicated that, for this kind of data, scales
under 2 s were less useful. And we also considered that
15 s was long enough to capture a wide range of long-term
phenomena. The other scales are chosen to have a constant
logarithmic spacing between each consecutive values.

We examine the performance on the test set, with 100
boosting iterations, using the same two evaluation measures
as in [2]. These ranking metrics measure the ability of a soft
prediction system to output higher scores for relevant doc-
uments compared to irrelevant ones. Soft predictions are
non-binary scores, representing the amount of confidence
the predictor has in the positive association of a considered
tag to a given song. We can obtain soft outputs from our
system, simply by averaging instead of thresholding the fi-
nal decision:

D̃a = meani∈aH(xi) (3)

This framework will make performance evaluation indepen-
dent from the detection threshold t, that we choose for Equa-
tion 1.

From these decisions, we compute the Mean Average
Precision (MAP) and Area under the ROC 3 curve (AUC).
For a precise description of their calculation, see [8].

3 Receiver Operating Characteristic.
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Scale Recognition rate (in %)
S1 59.8
S2 53.0
S3 62.9
S4 44.2

Multi-Scale 64.5

Table 1. Performance of the different systems on the instru-
ment recognition database.

Scale Tree depth MAP AUC

Scale 1
1 0.432 0.641
2 0.449 0.653

Scale 2
1 0.442 0.652
2 0.454 0.660

Scale 3
1 0.448 0.658
2 0.451 0.662

Scale 4
1 0.456 0.667
2 0.458 0.667

Scale 5
1 0.457 0.664
2 0.451 0.661

Multi-Scale
1 0.466 0.671
2 0.458 0.665

Table 2. Performance of the different systems on CAL500.

4.3 Results and discussion

The recognition rates yielded by the different systems on the
instrument database are presented in Table 1. It is found that
the multi-scale system has the best recognition rate. The
difference between multi-scale and scale 3 systems is sig-
nificant, according to a McNemar test [6], which yielded a
p-value of 0.003. This means that the difference is statisti-
cally significant with a 99.7% confidence level.

The features selected by the trees along the boosting iter-
ations differ greatly from one instrument to another, but the
most selected scales are the shortest and the longest ones
(S1 and S4). Surprisingly, these two scales do not corre-
spond to the best performing mono-scale systems. This may
be due to the fact that S1 gives the most temporally precise
description, while S4 is good at taking decisions on a 2.6 s
decision range, since it has the same length. Most of all,
this indicates that the information brought by the whole set
of scales is structurally different from just one scale.

A closer look at the detailed results, on a per-instrument
basis, also revealed that the multiscale system is not the best
performing one for all instruments. However, its perfor-
mance is less variable among instruments. This shows that
the multi-scale approach performs best, as it is more flexi-
ble, and can focus on the most appropriate representation.

The results for the multi-tag task on CAL500 are pre-
sented in Table 2. The best MAP and AUC are given by

the multi-scale system using trees of depth 1. The statisti-
cal significance of the difference between this system and
the best performing mono-scale one has been verified by a
cross-validated paired t test [6]. This test indicated a signif-
icance of more than 99%.

Depth 1 trees yield better results for the multi-scale sys-
tems, but the choice of depth seems to have variable effects
among mono-scale systems.

For comparison, in [2], the authors obtain a MAP and
AUC of 0.54 and 0.73, respectively, on the same data and
tags. But their system uses content-based and context-based
information, whereas the one presented in this paper only
relies on the audio content. However, the focus of this study
is intentionally set on the methodological validation of the
algorithm proposed, rather than achieving the best possi-
ble performance. Though, it shall be noticed that the abil-
ity of our new algorithm to handle data drawn on different
scales makes it applicable to descriptors of different seman-
tic levels, especially semantic information that may be valid
at a smaller scale than the entire song (type of instrument,
tempo, etc.). This very kind of data fusion will be explored
in future works.

5. CONCLUSION

We proposed a new multi-scale fusion system for classifi-
cation that is designed to be convenient for fusing hetero-
geneous features, both in terms of content description and
scale. Fusion is done thanks to an adapted boosting algo-
rithm using decision trees.

In this study, we focused on validating the ability of the
proposed system to conveniently fuse features expressed at
different scales. We experimented two classification tasks
and the results show that the multi-scale system is the best
one. Future work will study the ability of the system to fuse
features that are describing different aspects of the musical
pieces of interest, both in terms of content and scale.
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