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ABSTRACT

Emotional content is a major component in music. It has
long been a research topic of interest to discover the acous-
tic patterns in the music that carry that emotional informa-
tion, and enable performers to communicate emotional mes-
sages to listeners. Previous works looked in the audio signal
for local cues, most of which assume monophonic music,
and their statistics over time. Here, we used generic au-
dio features, that can be calculated for any audio signal,
and focused on the progression of these features through
time, investigating how informative the dynamics of the au-
dio is for emotional content. Our data is comprised of pi-
ano and vocal improvisations of musically trained perform-
ers, instructed to convey 4 categorical emotions. We ap-
plied Dynamic Texture Mixture (DTM), that models both
the instantaneous sound qualities and their dynamics, and
demonstrated the strength of the model. We further showed
that once taking the dynamics into account even highly re-
duced versions of the generic audio features carry a substan-
tial amount of information about the emotional content. Fi-
nally, we demonstrate how interpreting the parameters of the
trained models can yield interesting cognitive suggestions.

1. INTRODUCTION

There is a general agreement that music (especially instru-
mental music) lacks clear semantic information but conveys
rich emotional content. As a form of non semantic commu-
nication, musical performers are able to convey emotional
messages through the sound and listeners are able to in-
terpret the sound and figure out the emotional intention of
the performer. What are the patterns in the musical sig-
nal itself that enable this communication? The properties
of the musical content that are responsible for carrying this
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emotional information have long been the subject of inter-
est and research. In previous computational research that
analyzed emotions expressed in music performance, some
works looked for local acoustic cues, such as notes per sec-
ond, articulation degree, etc., that are present in the sound
and may play a significant role in conveying the emotional
message [1,2]. Statistics of these cues over time were calcu-
lated and were usually used to train a discriminative model.
Calculations of these local cues from raw audio data usually
rely on intermediate signal processing algorithms to detect
note onsets and other events, and these intermediate calcu-
lations may introduce assumptions, errors and bias. In ad-
dition, such cues are often defined for monophonic music,
and are sometimes even designed for specific instruments.
While such analysis methods may be very useful for musical
training and acquiring performance skills of conveying emo-
tions, they tend to be very specific. Other works avoid this
problem by using generic audio features, such as MFCCs or
other spectral features. Such generic audio features are de-
fined in a more straight forward way than sophisticated local
cues, and don’t require intermediate signal processing cal-
culations. Although these features may not describe certain
perceptual properties that the local cues try to capture, pre-
sumably they will be more robust. In addition, generic audio
features don’t assume anything on the signal, and can be ap-
plied to any audio signal, even if it contains polyphonic mu-
sic and even multiple instruments. Such audio content will
be a serious obstacle for the local cues approach. Several
systems that participated in the MIREX evaluation apply
the same audio features for different Music Information Re-
trieval (MIR) tasks [3, 4]. In those systems running average
and standard deviations of time varying audio features were
taken, but same as in the local cues approach, the complete
dynamics of the audio wasn’t used. Such methods disregard
the order of time points and assumes they’re independent.

In the presented work, we suggest an approach that ad-
dresses both the issues of specificity and dynamics. We
apply generic audio features (Mel frequency spectrum) to
overcome the specificity problem. The dynamics issue is re-
solved by using Dynamic Texture Mixture (DTM) [5]. DTM
was designed to model both the instantaneous properties of
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Poster Session 6

happy sad angry fearful total
piano 8 7 7 6 28
vocal 12 12 12 12 48
total 20 19 19 18 76

Table 1. Distribution of the recordings over emotions and
instrument.

a time series signal, and their dynamics. This model en-
ables us to capture important information that resides in the
course of change of the audio through time, which is missed
when assuming independence among time points.

Similar dynamic systems were used by Schmidt and Kim
[6] to model the time-varying distribution of emotional state
(in 1 sec intervals). Here we regard each musical instance
(improvisation of about 30 seconds) as conveying a single
emotional message (described simply by an emotional ad-
jective), and we apply the dynamic system on the lower level
of the time-varying audio features themselves.

DTMs and Gaussian Mixture Models (GMMs) have been
applied to music information retrieval systems, including se-
mantic tags of emotional categories annotated by listeners as
being relevant for popular songs [7, 8], but not yet applied
to audio recordings specifically created to convey emotional
content. The data in the presented work has recordings of
improvisations by musically trained performers instructed
to convey specific emotions.

2. METHODS

2.1 Data

Our data set is comprised of 76 audio recordings of musi-
cally trained performers (2 pianists and 2 vocalists, 1 fe-
male and 1 male in each category). For each recording the
performer was instructed to improvise a short musical seg-
ment that will convey to listeners in a clear manner a single
emotion, one from the set of {happy, sad, angry, fearful}.
These emotional instructions were used as the ground truth
labels for the recordings (3 judges verified that the appropri-
ate emotions are expressed. Future analyses will also regard
ratings from a larger group of listeners as labels). These
improvisations clearly rely, in part, on well entrenched cul-
tural musical norms and even clichés. Thus we obtained a
relatively wide variety of acoustic manifestations for each
emotional category, which presumably capture the various
strategies and aspects of how these specific emotions can be
conveyed in Western music. The distribution of recordings
over emotions and instrument is detailed in Table 1. The
median duration for a recording was 24 seconds.

2.2 Audio features

Mel spectrum features were collected: for each time frame
Discrete Fourier Transform was calculated and the energy
of the frequency components was integrated in overlapping
frequency bins, in a Mel scale, and the 10log10 of the bins’
energies were saved. Similarly to [7] we used 34 Mel fre-
quency bins (partitioning the band from 20Hz to the Nyquist
frequency, 11kHz, to 34 Mel-scaled bins), and used half
overlapping time frames of 2048 samples (after re-sampling
the audio data to 22,050Hz, this results in a feature vector
every 46msec).

2.3 Modeling the dynamics

In order to model the dynamics of acoustic properties of
the music, we applied the Dynamic Texture Mixture (DTM)
model. DTM was previously used to model dynamic tex-
tures of video [5] and of audio [7]. A Dynamic Texture
(DT) is a generative model for a time sequence of observed
features (e.g. the acoustic features collected for each short
time frame), that assumes that the observed feature vector
y(t) was generated as a linear transformation (plus additive
Gaussian noise) over an internal state - a hidden vector vari-
able x(t) (possibly in a much smaller dimension than the
observed feature vector). It also assumes the dynamics of
the hidden variable is a Linear Dynamic System, driven by
additive Gaussian zero-mean noise: the state of the hidden
variable at any time point x(t) depends only on its state in
the previous time point x(t− 1), and the dependency is lin-
ear. {

xt = Axt−1 + vt

yt = Cxt + wt
(1)

Where vt and wt are both random normal variables (drawn
independently for each t). A DTM is a mixture of DTs,
each having a different relative weight. The DTM models
the generation of an audio instance (a song) as follows: for
each segment of the song first select a DT out of the mixture
(according to the weights of the DTs), and then generate the
observed acoustic features of the segment from the selected
DT.

Since this is a generative model, we can calculate the
likelihood of a song (or of a collection of songs) given a
DTM. This facilitates the ranking of songs according to their
likelihood of being generated by a given DTM or the rank-
ing of different DTMs according to the likelihood of a song
of being generated by them. The parameters of a DTM can
be learned from training data, using an iterative Expectation
Maximization algorithm tailored for learning DTMs (EM-
DTM) [5].

For each of the 4 emotions (happy, sad, angry and fear-
ful), sequences of 125 consecutive feature vectors were col-
lected (in order to get many feature sequences to train on,
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we used overlapping sequences, with hop of 15 feature vec-
tors from sequence to sequence) from all the recordings in
the training set that were associated with the emotion, and
a DTM to represent that emotion was trained over these se-
quences. Since each feature vector represented a time frame
of about 46msec, the resulting sequences represented seg-
ments of about 5.7 seconds. The median number of se-
quences collected for a recording was 26. We used DTMs
with 4 components (4 DTs), and with dimension of 7 for
the hidden variable x (unless the observed features were in
a lower dimension).

2.4 Performance evaluation

In order to evaluate the success of the acoustic features to
represent the required information regarding the emotional
content, and the success of the model to capture the relevant
acoustic patterns for the emotional content, we used infor-
mation retrieval framework and performance measures: Af-
ter training 4 emotion DTMs on the training set, a test set
with unseen recordings was analyzed. For each recording
the 4 emotions were ranked according to the likelihood of
that recording given the 4 emotion DTMs, and annotation
of 1 emotion (the one with highest likelihood) was given to
the recording. For each emotion, the test recordings were
ranked according to their likelihood given the DTM of the
emotion, as a retrieval task. Comparing the machine’s anno-
tation and retrieval to the ground truth emotion labels of the
test recording, 3 annotation measures and 2 retrieval mea-
sures were calculated, in a similar manner to [7]: preci-
sion (portion of the ground truth labeled instances out of the
machine-annotated instances), recall (portion of the machine-
annotated instances out of the ground truth labeled instances),
f-measure (balance measure between precision and recall),
mean average precision -MAP (average precision over dif-
ferent thresholds of ”how many of the top-ranked instances
to retrieve”) and area under ROC curve -AROC (area under
the tradeoff curve of true-positive rate vs. false-positive rate
for the retrieval task, area of 0.5 being chance and area of 1
being maximum possible). Each of the 5 measures was cal-
culated for each emotion, and then averaged over emotions.

To estimate these measures over general unseen data, 10-
fold cross validation scheme was used. For each partition,
4 emotion-DTMs were trained over 9/10 of the recordings,
and the 5 measures were calculated over the remaining 1/10
of the recordings. In each partition control performance
measures (chance level) were approximated by repeatedly
(400 times) generating random uniform values (instead of
the likelihood values actually calculated with the trained
models) and feeding them to the annotation-retrieval sys-
tem, for the test set. Mean and standard deviation over repe-
titions were collected as reference for assessment of quality
of the actual performance scores. Approximated p-values
were then calculated to each of the 5 measures, as the prob-

precision recall F MAP AROC
score 0.6446 0.6500 0.6000 0.8099 0.8692
chance 0.25 0.25 0.22 0.44 0.50
p-val 0.09 0.04 0.06 0.02 0.02

Table 2. Annotation and retrieval results for basic features.

ability of getting a higher score under the null hypothesis,
meaning with random values (assuming a normal distribu-
tion with the mean and standard deviation that we collected
for the random values). Finally we averaged over the 10
folds the 5 performance measures, as well as 5 chance level
scores and 5 p-values for our scores. The partition to 10
folds was semi random, making sure each fold contained in-
stances from all 4 emotional categories, and all experiments
were done using the same partitioning to 10 folds, in order
for the comparison to be consistent.

3. EXPERIMENTS AND RESULTS

3.1 Experiment 1 - basic

The system was applied to the basic features as described
above. The results of the cross validation are presented in
Table 2. In the basic experiment, the results demonstrate
that the DTM model manages to capture the important acous-
tic patterns for the communication of emotion.

3.2 Experiment 2 - power dynamics

In order to investigate the role of the power dynamics, two
complementary manipulations over the features were per-
formed:

Ex2.1: flattening the power. For each recording, all
the Mel spectra vectors were normalized to have the same
constant total power, but within each vector, the original ra-
tios among the frequency bins were preserved. This ma-
nipulation filters out the power dynamics (in time scales
larger than 46msec), and keeps all the rest of the information
stored in the original features (melody, timbre, etc.).

Ex2.2: keeping only the power dynamics. For each
recording and for each time point, instead of keeping 34 co-
efficients, only 1 coefficient is kept - the total power of the
time frame (in log scale). This manipulation preserves only
the power dynamics, and filters out the rest of the sound
properties. Since the observed features in every time frame
were then only 1 dimensional, the dimension of the hidden
variable x was also reduced to 1, resulting in a linear dy-
namic system that is almost degenerate (since the transition
matrix A is simply a scalar), and relies more on the driving
noise.

Ex2.3: not modeling dynamics. As control, using the
same features as in Ex2.2 we applied a GMM model that
assumes independent time frames, to see if we can still cap-
ture the remained relevant information about the emotions,
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precision recall F MAP AROC
Ex2.1 score 0.6134 0.6375 0.5775 0.7627 0.8429

p-val 0.07 0.04 0.05 0.04 0.02
Ex2.2 score 0.4287 0.4625 0.3801 0.5935 0.6879

p-val 0.19 0.14 0.18 0.16 0.14
Ex2.3 score 0.2931 0.3125 0.2638 0.5536 0.6454

p-val 0.44 0.4 0.42 0.29 0.25

Table 3. Results for power manipulations.

while disregarding the dynamics. The only dependency left
among time frames was the 1st and 2nd time derivatives
(delta and acceleration) of the feature vector (of the power
scalar, in this experiment) that were augmented, so the fea-
ture vector here was 3 dimensional (for time t: power(t),
delta(t) = power(t+1)−power(t) and acceleration(t) =
delta(t + 1) − delta(t)). For training we used the hierar-
chical EM algorithm for GMM (HEM-GMM), as described
in [8]. We used 4 components (4 Gaussians) for each model
(each GMM), and restricted to diagonal covariance matri-
ces.

Results are presented in Table 3 (the reference chance
levels, which appear in Table 2, are the same in all exper-
iments). Ex2.1 demonstrates that most of the information
about the conveyed emotion is retained even without the
gross dynamics of the power (keeping in mind that some
finer power dynamics can be expressed inside each time
frame, in the lower frequency bins). Although this may
suggest that the gross power dynamics doesn’t carry much
information about the emotions, Ex2.2 shows the contrary:
after reducing the features to only the power dynamics, the
scores remain fairly high (although, as expected for a 1 di-
mensional time function, some decrease in performance is
evident). The results show that the power dynamics does
carry useful information about the emotional content. The
control done in Ex2.3 shows that GMM got very poor scores
for the 3 annotation performance measures, and relatively
poorer results than DTM (Ex2.2) for all measures. It is quite
expected that when reducing the features to only the power,
treating the time frames as independent will yield insuffi-
cient information about the emotions. The gap between the
results of Ex2.2 and Ex2.3 shows the added value of taking
into account the dynamics of the acoustical properties (when
even 1st and 2nd time derivatives are not enough).

3.3 Experiment 3 - avoiding frequency correlations

When acoustical instruments (or human voice) are playing,
the harmonic structure has correlations between the funda-
mental frequencies and their higher harmonics, resulting in
correlation between the dynamics of different frequency bins,
and suggesting redundancy when all these frequency bins
are specified. The DTM model deals with this redundancy
by trying to find a lower representation in the hidden state
x that generates the observed vectors (by linear transforma-

precision recall F MAP AROC
Ex3.1 score 0.5288 0.5667 0.4847 0.7331 0.7969

p-val 0.23 0.13 0.19 0.13 0.1
Ex3.2 score 0.4701 0.4375 0.3648 0.6213 0.6546

p-val 0.14 0.16 0.21 0.16 0.21
Ex3.3 score 0.1718 0.175 0.1339 0.4354 0.5425

p-val 0.67 0.65 0.69 0.51 0.4

Table 4. Results for keeping part of the spectrum.

tion with the observation matrix C - the principal compo-
nents of the observed features) [7]. We wanted to reduce the
observed features prior to summarizing the whole spectrum
and, in a way, to overlook the correlations among frequen-
cies. For this purpose we examined limiting our view to only
part of the spectrum. We focused on two opposite extremes
of the spectrum captured by the original features:

Ex3.1: 6400Hz-11025Hz (Nyquist frequency). Keep-
ing only the last 6 frequency bins of each time frame. Such
frequency band is likely to contain resonating frequencies to
the fundamental frequencies of the melody being played (or
voiced). When calculating mean over all time frames in all
instances in the data set, these 6 bins carry only 0.036 of the
power (not log power) of the spectrum.

Ex3.2: 0Hz-275Hz. Keeping only the first 3 frequency
bins of each time frame. For part of the time frames this
frequency band may be below the present fundamental fre-
quency of the tones being played. These 3 bins carry (in
average) 0.25 of the power of the spectrum. For both Ex3.1
and Ex3.2 we used dimension of 3 for the hidden variable x.
These extreme bands probably behave differently for piano
and for vocal and interesting insights can later be raised by
performing similar experiments separately for instruments.

Ex3.3: not modeling dynamics. Similar to the control
done in Ex2.3, we applied the GMM model to the features
used in Ex3.2, plus 1st and 2nd time derivatives.

Results are presented in Table 4. Ex3 demonstrates that
in both extremes of the spectrum, there are small frequency
bands that still carry a fair amount of information about the
conveyed emotions (performance is still relatively far from
chance level). The control in Ex3.3 that, again, shows poor
results with the GMM (performance being about chance level
or worse), affirms that the remained relevant information
lies mostly in the dynamics.

3.4 Experiment 4 - melodic structure

Next we aimed to examine the affect of the melodic dynam-
ics on the conveyed emotions. Since it is neither simple
nor accurate to determine the notes that were played, espe-
cially for polyphonic music (such as our piano recordings),
we chose to define a more accurate property that hopefully
will be more robust: the dynamics of the strongest frequency
bin. We cannot claim to describe the perceived melody
(or the played notes) with this property (since pitch percep-
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precision recall F MAP AROC
score 0.4322 0.4375 0.3852 0.58 0.6863
p-val 0.23 0.2 0.21 0.2 0.16

Table 5. Results for keeping only strongest frequency bin.

tion or production is more complex than just the strongest
frequency present, and since the piano music has multiple
tones played simultaneously). However this property is eas-
ily computed and can be used as a surrogate marker for
the melodic progression. For this experiment, in each time
frame only the strongest bin remained active and the power
of all the other frequency bins was nullified. Furthermore, to
get rid of the power dynamics, the power of all time frames
was set to be constant, so the only remaining information
was the identity of the activated bin in each time frame. The
dimension of the hidden variable x was set to 1. Results are
shown in Table 5. Although the features were reduced to a
large extent, a predictive ability is still present.

3.5 Interpreting the trained models

After validating that DTMs can capture important acous-
tic patterns for emotional content, we wanted to understand
the differences between different trained emotion models
that enabled the system to discriminate. Using a genera-
tive model is suitable to describe the process of production:
the performers that want to convey some emotion and apply
an appropriate generative strategy to create their resulting
sound. In order to get insight about the different generative
strategies, one needs to compare the learned parameters of
the trained models. For this purpose we retrained 4 emotion
DTMs over the entire data set, for our different experiments.

The main component that describes the dynamics of the
system in a DT is the transition matrix A. If the system
were a deterministic linear dynamic system, without the ad-
ditive noise, this transition matrix would tell both the des-
tination of the state of the system x and the way it will
take to get there. The eigenvectors of A describe the dif-
ferent modes of the system - different patterns of activating
the observed features. The eigenvalues of A (complex num-
bers) indicate the course of progress of the different modes
(patterns) of the system: while having an eigenvalue with
magnitude larger than 1 results in the state of the system di-
verging, having an eigenvalue with magnitude of 1 results
in the state converging to either a stable state or stable limit
cycle determined by the eigenvector of that value, and hav-
ing all eigenvalues with magnitudes smaller than 1 results
in a system that strives to converge to the zero vector state
(if there is no additive noise to reactivate the modes). The
magnitude of an eigenvalue indicates the intensity or stabil-
ity of this mode (how slowly this mode will decay or how
much anti-mode noise needs to be added to this mode in or-
der to silence it). The angle of the eigenvalue indicates the

Figure 1. Eigenvalues for using the basic features (Ex1).
Each different shape represents 20 eigenvalues of transition
matrices from DTs of a different emotion DTM (5 largest
eigenvalues from 4 DTs per emotion-DTM). happy - circle,
sad - star, angry - triangle, fearful - square.

normalized frequency of the mode - if an eigenvalue has a
large angle its mode will oscillate and modulate its pattern
in a fast period, returning to the original modulation pattern
(only with smaller magnitude) after only few time frames.
The maximal normalized frequency will be π, making the
mode change to its exact negative in each consecutive time
frame. We examined the eigenvalues of the different DTs
of the different emotion DTMs, and presented their magni-
tudes (intensity) and angles (frequency).

In both conditions presented in Figure 1 and Figure 2 there
is a clear concentration of the eigenvalues of the sad model
(marked with star) with relatively high intensities and low
frequencies (in absolute value). This can be interpreted as
a general strategy (either conscious or subliminal) of the
performers to convey sadness using stable and slowly mod-
ulated acoustic patterns. On the opposite, the happy and
angry models (marked by circle and triangle, respectively)
include many modes with smaller intensities and higher fre-
quencies, suggesting strategies that include fast repetitions
of acoustic patterns (high frequencies) and easy switching
from one dominating pattern to another (the low magnitudes
mean that little noise is sufficient to shake off these modes
and activate different modes).

Such conclusions should be taken with a grain of salt. We
should remember the system also has additive noise. In ad-
dition, in order to adequately generalize these results, much
larger data sets, with many performers, should be used. How-
ever, such analyses may help to focus future research on
certain aspects of production of music for emotional com-
munication.
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Figure 2. Eigenvalues for keeping only higher frequency
band (6 kHz-11 kHz. Ex3.2).

4. DISCUSSION

Investigating the dynamics of generic acoustic features in
musical audio can reveal important components of the mu-
sic, and specifically for emotional content. Generic acoustic
features can be informative for various melodic, harmonic,
rhythmic and instrumental content of music, and here we
demonstrated their successful usage for both monophonic
and polyphonic music. We have shown that even highly
reduced audio features, such as the power, can still retain
much of the emotional message, when taking into account
the time progression of the property. Interestingly, comple-
mentary manipulations to reduce the audio features (”flat-
tening the power” vs. ”keeping only the power dynamics”)
both kept a discriminative ability, suggesting that the in-
formation about the emotional intention carried by separate
components of the sound is not simply additive, but rather
having redundancy. One should remember, though, that it
might require few dimensions of features to discriminate 4
emotions, but possibly require more detailed features, when
discriminating more emotions and emotional subtleties.

Future research using similar methods should be applied
over more general musical data, with multiple instruments,
to find general dynamic patterns that convey different emo-
tions. It may be interesting to investigate the critical time
resolutions that show dynamics that is relevant for emo-
tional content (perhaps taking sequences of more than 125
time frames will reveal slower informative patterns). Exper-
iments with larger data will enable investigating differences
in strategies, in informative frequency bands, redundancy
patterns and other aspects, among different emotions. An-
other interesting direction is to use trained generative mod-
els to synthesize new audio instances. This is not a simple

challenge, but even if the resulting sounds will not be intel-
ligible or natural sounding, they may still have an effect of
conveying emotions, and concordance between the emotion
of the generated audio and that of the generating model will
be another convincing argument that the model captures im-
portant acoustic patterns for emotional communication.
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