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ABSTRACT 

The goal of this study was to examine the possibility of 

training machine learning algorithms to differentiate be-

tween the performance of good notes and bad notes. Four 

trumpet players recorded a total of 239 notes from which 

audio features were extracted. The notes were subjectively 

graded by five brass players. The resulting dataset was used 

to train support vector machines with different groupings of 

ratings. Splitting the data set into two classes (―good‖ and 

―bad‖) at the median rating, the classifier showed an aver-

age success rate of 72% when training and testing using 

cross-validation. Splitting the data into three roughly-equal 

classes (―good,‖ ―medium,‖ and ―bad‖), the classifier cor-

rectly identified the class an average of 54% of the time. 

Even using seven classes, the classifier identified the cor-

rect class 46% of the time, which is better than the result 

expected from chance or from the strategy of picking the 

most populous class (36%). 

1. INTRODUCTION 

1.1 Motivation 

For some musical parameters, such as pitch or loudness, 

there are a well-established links between signal features of 

the audio file and perception [1]. Timbre is more compli-

cated as several factors contribute to its perception [2]. The 

subjective quality of a musician’s performance is more 

complicated still, with assumed contributions from pitch or 

intonation, loudness, timbre and likely other unknown fac-

tors [3].  

The goal of this study is to determine the feasibility for 

computer analysis of performance quality. Given sufficient 

training data, is it possible for a computer to identify good 

and poor quality notes so as to give feedback to student 

musicians or for other pedagogical purposes.? This study 

also serves to create a dataset on which the signal compo-

nents of tone quality may be examined. 

The work was carried out by recording isolated notes 

played on trumpet by players with a range of experience, 

collecting subjective ratings of quality from human sub-

jects, and training a classifier to identify note quality using 

extracted audio features. Because each of the notes were 

rated and analyzed in isolation, (i.e. as a single note without 

accompaniment or directed comparison), the note quality 

judgements in question are not likely to be affected by into-

nation, nor would they be related to other aspects of note 

quality dependent on musical context. 

1.2 Tone Quality 

Timbre is frequently defined as the differences between two 

sounds of the same pitch and loudness. This study was de-

signed to isolate tone quality differences between notes of 

similar pitch, dynamics, and instrument. While numerous 

studies have attempted to determine the components of 

timbre that differentiate instruments and sounds [5-7], few 

studies have examined the auditory differences contributing 

to judgments of performance quality of tones. These  stu-

dies most often use a technique called perceptual scaling to 

identify principal dimensions of timbre which generally 

aligned with the spectral content, the temporal change in 

the spectrum, and the quality of the attack [6,8]. With 

acoustically produced musical tones, however, these factors 

are interdependent and affect the perception of one another.  

The contribution and inseparability of the different 

components of the sound is also found in pedagogical lite-

rature. In his instructional book on the trumpet, Delbert 

Dale says, ―the actual sound of the attack (the moment the 

sound bursts out of the instrument) has a great deal to do 

with the sound of the remainder of the tone—at least to the 

listener‖ [9].   

The few studies that have examined tone quality looked 

at specific aspects of the notes. Madsen and Geringer [4] 

examined preferences for ―good‖ and ―bad‖ tone quality in 

trumpet performance. Though the two tone qualities were 

audibly distinguishable when presented without accompa-

niment, the only difference their published analysis dis-

cussed was the amplitude of the second fundamental. In a 

different study, an equalizer was used to amplify or dampen 

the third through eleventh harmonics of recorded tones to 

be rated in tone quality [10]. For the brass instruments 

notes, a darker tone, caused by dampened harmonics, was 
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judged to have a lower tone quality than the standard or 

brightened conditions. 

The factors other than the amplitudes of the harmonics 

affect tone quality, and an examination of these is war-

ranted. For the trumpet, tone quality is a product of the 

―balance and coordination‖ of embouchure, the oral cavity, 

and the airstream [11]. While ―no two persons have the 

same or even similar tonal ideals‖ [9] and the standard for 

good and bad tone quality varies,  common problems such 

as ―a shrill piercing quality in the upper register, and a 

fuzzy and unclear tone in the lower register‖ [9] have been 

identified. 

The goal of this study is to therefore see if it is possible 

to train a classifier that can use extracted audio features to 

make judgements about note quality consistent with aver-

age human judgements despite such variable and subjective 

criteria. The instructions given to our human participants 

(described later) are therefore intentionally vague to avoid 

biasing or limiting judgements and to avoid prescribing a 

definition of tone quality.   

2. METHODS 

2.1 Recordings 

Recordings of the trumpet tones took place in a room de-

signed for performance recording. The positions of the mi-

crophones, music stand, and player were the same for all 

recordings. Recordings were done using a cartioid micro-

phone (DPA 4011-TL, Alleroed, Denmark) and a two 

channel recorder (Sound Devices 744T, Reedsburg, Wis-

consin) at a bit depth of 24 and a sample rate of 48 kHz. 

The players had a range of experience and education on the 

trumpet. Player 1 is a musician whose primary instrument is 

the trombone and only played trumpet for this study. Player 

2 is a trumpet player with twelve years of private lessons 

and regular ensemble performances at the university level 

both of which, however, ceased two years ago. Player 3 is 

currently an undergraduate music performance major who 

plays regularly with the university orchestra. Player 4 has 

been playing for 14 years with no instruction at the univer-

sity level but with frequent live jazz performances.  

The recorded phrases were three lines consisting of four 

half notes (minims) separated by half rests (minim rests). 

The same valve combination was repeated in the low range 

(A, Bb, B, C), mid range (E, F, F#, G), and high range (E, 

F, F#, G) and the players were instructed on which valves 

to use when a choice existed. Before recording each line, 

the players were given four clicks of a metronome at 60 

bpm.  The three lines were played with instructed dynamic 

levels of piano, then repeated at mezzo-forte and fortissimo.  

With the exception of the trombone player, the musi-

cians all recorded on their own trumpet and mouthpiece as 

well as a control trumpet (Conn Director, Conn-Selmer, 

Elkhart, Indiana) and mouthpiece (Bach 7C, Conn-Selmer). 

That is to say, three players recorded twelve notes at three 

different dynamic levels on two trumpets for a contribution 

of 214 notes. The trombone player, player 1, could not play 

the highest four notes and therefore contributed just eight 

notes at three dynamic levels on one trumpet for a total of 

24 notes. One note from the dataset was excluded due to 

computer error so the total dataset had 239 notes.  

2.2 Labeling 

Individual notes were manually excised from the recordings 

to make discrete stimuli for subjective rating. Five brass 

players (three trumpet players, one trombone player, and 

one French horn player, all undergraduate or graduate mu-

sic students with extensive performance experience) pro-

vided subjective labeling of the quality of the notes on a 

discrete scale from 1 to 7 with 1 labeled as ―worst‖ and 7 

labeled ―best.‖ The raters were instructed to listen to the 

note as many times as they wanted and to make a subjective 

rating of the note using anything they could hear and any 

criteria they deemed important, including their specific 

knowledge of brass instruments and the dynamic level. The 

notes were presented in three blocks (all the piano notes, all 

the mezzo-forte notes, all the fortissimo notes) but were 

randomized within each block.  

Note quality judgements varied greatly per rater, as ex-

pected. While the intersubject ratings correlations averaged 

at r=0.50, some stimuli were rated more consistently than 

others. Dividing the 239 notes on the median standard devi-

ation of 1.14 (on the discrete range of 1 to 7), the intersub-

ject correlations on the more consistent subset of 118 (less 

than or equal to 1.14) averaged to r = 0.79. In contrast, the 

intersubject correlations on the remaining 121 stimuli aver-

aged at r = 0.13, and failed to correlate significantly (i.e., 

with p<0.05) in 6 of 10 pair wise comparisons. Most of the 

bulge in the distribution of rounded average ratings, shown 

in figure 1, is due to these notes of ambiguous quality as 

they average to 4 or 5 with a couple dozen 3s and 6s. In the 

following analysis, all notes were represented only by their 

average rating across the five raters. The distribution of av-

eraged ratings of the dataset is shown in Figure 1. 

2.3 Feature Extraction 

While studies have examined appropriate features for tim-

bre recognition [12], timbre is just a subset of what poten-

tially makes up the quality of a note. The extracted audio 

features were therefore widely selected, using 56 different 

features, of which 6 were multidimensional A complete list 

is given in the appendix. jAudio was used for feature ex-

traction.[13] 
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Figure 1. Histogram of the rounded average ratings from 

all raters and showing the contribution from each player. 

2.4 Learning 

2.4.1 Classifier Choice 

ACE (Autonomous Classification Engine) 2.0, software 

used for testing, training, and running classifiers [14] was 

used throughout the study for these purposes. ACE was 

used to experiment with different classifiers including k-

nearest neighbour, support vector machines (SVMs), sever-

al types of decision trees, and neural networks on a couple 

subsets of the data. .SVMs tended to perform best on these 

subsets.. For this reason and because of the relative inter-

changability of these techniques, SVMs were used through-

out this study. In multi-class situations, however, SVMs do 

not encode an ordering of classes which makes the task 

slightly more difficult in the three and seven-class problems 

discussed below. 

2.4.2 Groupings 

Different groupings of the notes were used to test the accu-

racy of the classifiers, including two, three, and seven 

classes. While the judgments from the five raters were only 

integer values, each note was represented by a single aver-

age rating across all the raters and was therefore often a de-

cimal number. The notes were assigned to classes based on 

this average rating. 

Two-class problems were evaluated for three different 

groupings. The first grouping takes just the extremes of the 

data: the ―good‖ class only has average ratings above 5.5 

and the ―bad‖ class has average ratings below 2.5, exclud-

ing all points in between. The second grouping is more in-

clusive, including all data below 3.5 for ―bad‖ and above 

4.5 for ―good,‖ again excluding data in between. The last 

grouping includes all the data, split at the median rating, 

4.6. The distribution of this labeling is shown in Figure 2. 

Secondly, a grouping of three classes was also eva-

luated, splitting the data approximately into three groups, 

below 4.2, above or equal to 5.2, and the points in between. 

Lastly, rounding the averaged ratings into the nearest 

category produced seven classes of data with labels 1 to 7. 

The distribution of this class is the same as seen in Figure 

1. 

2.4.3 Other tests 

Furthermore, to test the performance of the classifier on 

notes from an unseen player we used a leave-one-player-out 

methodology. To do this, we repeated the above tests using 

three of the players to train and finding the success of clas-

sification on the fourth player. Because of the dominance of 

player 1 in ratings less than 2.5, we tested the seven class 

test with and without player 1 and did not test the two class 

problem using just the extremes of data (points less than 2.5 

and greater than 5.5).  

A classifier was also trained to test the possibility of 

discriminating between performers. To do this, each note 

was labeled only with a performer number, 1 through 4. 

 

 
Figure 2: The distribution of the two classes when using all 

of the data, divided at the medan rating of 4.6. 

3. RESULTS 

For the two class problems, the most extreme data resulted 

in the highest success rate and increasing the inclusion of 

the classes lowered the average success of the five-fold 

cross validation. These results are summarized in Table 1. 

For the three class problem, with a five-fold cross vali-

dation, an SVM correctly identified the class on average 

54.0% of the tones. This result is shown in Table 2.
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"Bad" "Good" Average 
Success Range Number Range Number 

1–2.4 19 5.6–7 47 96.9% 

1–3.4 42 4.6–7 134 87.5% 

1–4.5 105 4.6–7 134 72.0% 

Table 1: Classifier results with two classes and five-fold 

cross validation  

"Bad" "Middle" "Good" Average 
Success Range Number Range Number Range Number 

1–4.1 77 4.2–5.1 86 5.2–7 76 54.0% 

Table 2: Classifier results with three classes and five-fold 

cross validation 

The five-fold cross-validation success of the seven class 

problem is shown in Table 3 and the confusion matrix is 

shown in Table 4. The rows labels represent the true classi-

fications of the instances and the columns labels are the 

classifications assigned by the SVM. For instance, of the 

notes of class 1, eight were correctly identified but one note 

was labeled 3 and two were labeled 4. 

Class 1 2 3 4 5 6 7  Avg. Success 

Number 11 8 23 63 87 43 4 46.03% 

Table 3: Classifier results with seven classes and five-fold 

cross validation 

  1 2 3 4 5 6 7 

1 8   1 2       

2 2     4 2     

3     1 15 6 1   

4       26 35 2   

5       22 56 9   

6       3 21 19   

7         1 3   

Table 4: The confusion matrix for the seven-class problem; 

the correct classes are given in the row labels. 

When using the leave-one-player-out test, the success 

rate decreased. A summary is shown in Table 5. 

For the performer identification task, with five folds, the 

classifier averaged 88.3% success. The confusion matrix is 

shown in Table 6. Again the correct label is the row label. 

For example, player one played 24 notes, of which 21 were 

identified correctly, two were incorrectly labeled as player 

2 and one labeled as player 3. 

Player tested 
  

1 2 3 4 Avg. 
 

23% 66% 84% 67% 60% 2 classes (1–3.5, 4.6–7) 

67% 60% 47% 51% 56% 2 classes (split at 4.6) 

58% 35% 39% 38% 42% 3 classes 

0% 25% 24% 38% 22% 7 classes 

 
26% 25% 39% 30% 7 classes (w/o player 1) 

Table 5: Results for leave-player-out classification. 

 

  1 2 3 4 

1 21 2 1   

2 1 61   10 

3   1 68 3 

4 3 5 2 61 

Table 6: The player identification confusion matrix; the 

correct player identifications are given by the row-labels. 

4. DISCUSSION 

The classifiers show a surprising ability to discriminate be-

tween classes based on the extracted features with two, 

three, and seven classes. Even with seven classes, the clas-

sifier identified the correct class 46% of the time, which is 

better than chance or the success rate expected from pick-

ing the most common class (36%). This shows promise for 

the possibility to train a classifier to give automatic feed-

back on student musicians’ performance. 

There are, however, severe limitations to this data set. 

Because there are only four players in the data set, each 

with a distinct distribution of notes, there may be latent fea-

tures unrelated to performance quality that can help narrow 

the selection of class and improve classifier success. This 

hypothesis is bolstered by the high success in performer 

identification task. For comparison, a 1-note attempt at 

identifying the correct performer out of three possible per-

formers gave at best a 43% success in a previous study 

[15].  

The classifier’s success with the subset of 118 notes 

with rating standard deviation less than or equal to 1.14 was 

not different than the dataset as a whole. This seems to in-

dicate the classifier is not using the same cues or salient 
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features that allowed or encouraged agreement between the 

raters. 

The results for the leave-one-player-out task decreased 

sharply compared to the result using all players and testing 

with cross-validation. This could be because of the distinct 

distribution of each player and/or other distinct features that 

identify one performer compared to another. 

In the seven class identification task, mathematically, 

for a note to be considered of class one (or 7) there had to 

be strong agreement among the raters, as at least 3 of the 

raters had to rate that note as class one. This distinctively 

bad performance of class 1 notes probably led to the rela-

tively high success in identifying them (8 out of 11 correct) 

compared to, for example, class 2 which had no correct 

identifications. As well, because player 1 was not able to 

record the top four notes of the exercise, having a higher 

pitch note skews the rating towards the upper end of rat-

ings. 

Further work is needed to examine the robustness of 

these results with more players and with different recording 

conditions, such as notes of varying duration, or using 

phrases of several notes. 
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6. APPENDIX: FEATURES EXTRACTED 

Beat Sum Overall Average 

Beat Sum Overall Standard Deviation 

Compactness Overall Average 

Compactness Overall Standard Deviation 

Derivative of Partial Based Spectral Centroid Overall Av-

erage 

Derivative of Partial Based Spectral Centroid Overall Stan-

dard Deviation 

Derivative of Root Mean Square Overall Average 

Derivative of Root Mean Square Overall Standard Devia-

tion 

Derivative of Spectral Centroid Overall Average 

Derivative of Spectral Centroid Overall Standard Deviation 

Derivative of Spectral Flux Overall Average 

Derivative of Spectral Flux Overall Standard Deviation 

Derivative of Spectral Rolloff Point Overall Average 

Derivative of Spectral Rolloff Point Overall Standard Devi-

ation 

Derivative of Strongest Frequency Via Zero Crossings 

Overall Average 

Derivative of Strongest Frequency Via Zero Crossings 

Overall Standard Deviation 

Fraction Of Low Energy Windows Overall Average 

Fraction Of Low Energy Windows Overall Standard Devia-

tion 

LPC Overall Average 

LPC Overall Standard Deviation 

Method of Moments Overall Average 

Method of Moments Overall Standard Deviation 

MFCC Overall Average 

MFCC Overall Standard Deviation 

Partial Based Spectral Centroid Overall Average 

Partial Based Spectral Centroid Overall Standard Deviation 

Root Mean Square Overall Average 

Root Mean Square Overall Standard Deviation 

Spectral Centroid Overall Average 

Spectral Centroid Overall Standard Deviation 

Spectral Flux Overall Average 

Spectral Flux Overall Standard Deviation 

Spectral Rolloff Point Overall Average 

Spectral Rolloff Point Overall Standard Deviation 

Spectral Variability Overall Average 

Spectral Variability Overall Standard Deviation 

Standard Deviation of Compactness Overall Average 

Standard Deviation of Compactness Overall Standard Dev-

iation 

Standard Deviation of Partial Based Spectral Centroid 

Overall Average 

Standard Deviation of Partial Based Spectral Centroid 

Overall Standard Deviation 

Standard Deviation of Root Mean Square Overall Average 

Standard Deviation of Root Mean Square Overall Standard 

Deviation 

Standard Deviation of Spectral Centroid Overall Average 

Standard Deviation of Spectral Centroid Overall Standard 

Deviation 

Standard Deviation of Spectral Flux Overall Average 

Standard Deviation of Spectral Flux Overall Standard Dev-

iation 

Standard Deviation of Strongest Frequency Via Zero Cross-

ings Overall Average 

Standard Deviation of Strongest Frequency Via Zero Cross-

ings Overall Standard Deviation 

Standard Deviation of Zero Crossings Overall Average 

Standard Deviation of Zero Crossings Overall Standard 

Deviation 

Strength Of Strongest Beat Overall Average 

Strength Of Strongest Beat Overall Standard Deviation 

Strongest Frequency Via Zero Crossings Overall Average 

Strongest Frequency Via Zero Crossings Overall Standard 

Deviation 

Zero Crossings Overall Average 

Zero Crossings Overall Standard Deviation 
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