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ABSTRACT

Digitalizing sheet music using Optical Music Recognition
(OMR) is error-prone, especially when using noisy images
created from scanned prints. Inspired by DNA-sequence
alignment, we devise a method to use multiple sequence
alignment to automatically compare output from multiple
third party OMR tools and perform automatic error-correction
of pitch and duration of notes.

We perform tests on a corpus of 49 one-page scores of
varying quality. Our method on average reduces the amount
of errors from an ensemble of 4 commercial OMR tools.
The method achieves, on average, fewer errors than each
recognizer by itself, but statistical tests show that it is sig-
nificantly better than only 2 of the 4 commercial recogniz-
ers. The results suggest that recognizers may be improved
somewhat by sequence alignment and voting, but that more
elaborate methods may be needed to obtain substantial im-
provements.

All software, scanned music data used for testing, and
experiment protocols are open source and available at:
http://code.google.com/p/omr-errorcorrection/

1. INTRODUCTION AND RELATED WORK

Optical music recognition (OMR) is an active field, but suf-
fers from a number of technical pitfalls, even in the “typ-
ical” case where only music notation in modern, conven-
tional western style is considered [3,8,13]. While affordable
commercial tools for OMR are available, imperfections in
scanned sheet music make these error-prone (see Fig. 1).

One possibility for improving the accuracy of OMR pro-
grams is to use multiple recognizers: Let several programs
(recognizers) perform OMR independepently, and combine
the results afterwards using a combined recognizer. The
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Figure 1. Example of a recognizer missing a note. Left: Bar
6 of the bass part of a piano arrangement of “God save the
Queen” by T.A. Arne. Right: The output of Capella-Scan
1.6.

practical possibility of using multiple recognizers has been
investigated by Byrd et al. [5–7], and appears promising, but
brings new pitfalls with it; in extreme cases, OMR programs
could fail dismally at different tasks, hence–in theory–making
the combined result worse than the output of the individual
recognizer.

In contrast, we take a workmanlike approach to multi-
ple recognizers: The basic tenet is that every commercially
available tool will not fail dismally on a single aspect of
OMR in most cases (the product would be too poor to use),
and that different tools are likely to fail in different aspects.
Byrd et al. [6,7] suggest amassing a set of rules, or attaching
weights to certain single recognizers, based on their prior
performance, to obtain maximal increase of accuracy in a
multi-recognizer tool; however, they also note that this is
a moving target, due to new versions of existing products
improving on some aspect of recognition. In contrast, we
are simply satisfied if a multi-recognizer is, on average, bet-
ter than any single-recognizer, to a high degree of statistical
significance.

To account for the fact that different recognizers may
make different errors, hence causing misalignment of their
respective outputs (see Fig. 2) we align their outputs using
a multiple sequence alignment algorithm and subsequently
use a simple voting procedure to resolve conflicts. A pre-
requisite for such an approach to work is that no single rec-
ognizer significantly outperforms the others, as a multiple
recognizer would then perform worse as the suboptimal rec-
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Figure 2. Misaligned notes from the third bar of “Mon beau
sapin” by E. Anschütz. Top: Original; middle: Capella-
Scan 6.1; bottom: Photoscore Ultimate 6.

ognizers introduce noise in the sequence alignment.
Our work was originally motivated by our desire to ex-

amine melodic and harmonic progression as used by dif-
ferent composers, and how the statistical properties of such
progressions changed over the lifetime of composers. Our
results are thus restricted to aspects of melody and harmony;
we thus consider only notes, rests, bars, keys, etc., but omit
dynamic indications (p, pp, etc.) and the–admittedly more
difficult–problem of slurs and complex annotations.

1.1 Related work

Byrd et al. [5–7] report on several experiments using an
OMR system based on several different recognizers, includ-
ing a prototype system for sequence alignment, but do not
give details on the numerical improvement of the multi-recog-
nizer system. Szwoch [15] uses alignment within bars to au-
tomatically obtain error counts for OMR systems, but does
not give numerical evidence. Pardo and Sanghi [12] em-
ploy multiple sequence alignment to find optimal matching
works in databases of polyphonic music when queried with
monophonic pieces; they consider an alphabet where each
musical symbol is a note with pitch and duration, and each
part in a polyphonic score corresponds to a sequence. Al-
lali et al. substantially extend this approach to encompass
polyphonic queries [1, 2].

While the work of Byrd et al. is very similar to ours, we
believe our work offers the following incremental benefits:
(i) confirmation of the positive results obtained in the exper-
iments of Byrd et al., (ii) comparison of different commer-
cial tools with each other and with a system based on multi-
ple recognizers with statistical significance testing, (iii) full,
numerical reporting of results, (iv) full release of all tools
as open-source software, including the MusicXiMpLe XML
Schema Definition (XSD) and sequence alignment software.

MusicXML

Result in
MusicXiMpLe

Resulting
sequence

Aligned
sequences

Sequences

MusicXiMpLe

Sequencer

Voter

Sequence aligner

Sequencer

Converter

Figure 3. Pipeline for the OMR system. Rectangles rep-
resent data objects and boxes machinery for processing or
converting data. The left topmost rectangle contains n dif-
ferent pieces of MusicXML data from n different OMR pro-
grams.

2. ALIGNMENT OF OUTPUT FROM MULTIPLE
RECOGNIZERS: PRACTICAL OVERVIEW

Our combined recognizer takes the output from several rec-
ognizers in a common format, converts the output to sev-
eral sequences of musical symbols which are then aligned
with conflicts resolved by majority (colloquially: “The pro-
grams vote for the symbols” after alignment); the resulting
sequence is then converted to the common format (see Fig.
3.

We employed four commercial recognizers: Capella-Scan
6.1, SmartScore X Pro 10.2.6, PhotoScore Ultimate 6, and
SharpEye 2. VivaldiScan was briefly investigated, but dis-
carded as it (for our purposes) was only a wrapper for the
OMR procedures of SharpEye. All tools support several
output formats; we chose MusicXML as all programs sup-
port it and the format is amenable to manipulation.

The converter converts MusicXML to a standard format
called MusicXiMpLe (see Section 2.1) with the purpose of
normalizing notation. The sequencer converts MusicXiM-
pLe to an internal representation of music as a sequence
of symbols (see Section 3.1). The Sequence aligner (see
Section 3.2) uses multiple sequence alignment to align the
sequences, and the Voter is used to settle disputes among
OMR programs after alignment. The Sequencer is then used
again to convert from the internal sequence representation to
the standard format.
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2.1 A common output format: MusicXiMpLe

Due to the ambiguities in MusicXML, a piece of music can
be represented in different ways, and different recognizers
may output starkly different MusicXML, even if all recog-
nizers read the music correctly. Furthermore, MusicXML
is quite verbose, containing more information and metadata
than needed for our experiment. To address these issues,
we created an XML Schema Definition (XSD) containing
solely those elements needed for analysis. We call the set of
XML-data conforming to our XSD “MusicXiMpLe”; note
that valid MusicXiMpLe is also valid MusicXML.

Briefly, MusicXiMpLe holds the following data. In con-
trast to ordinary MusicXML, restrictions are noted in [square
brackets]: (i) parts [each part holds exactly one staff], (ii)
measures [only part-wise structures are allowed, not time-
wise], (iii) notes [only pitch, duration, octave, alternation
and simultaneity are recorded], (iv) rests [only duration is
recorded], (v) the MusicXML “musical counter”, (vi) re-
peats and alternative endings, (vii) time-signature, (viii) key,
(ix) chord symbols.

3. MUSICAL SYMBOLS AND MUSIC DATA AS A
SEQUENCE

Sequence alignment is the task of comparing and aligning
n > 1 sequences of symbols. As an example, consider the
sequences s1 and s2 constructed using the symbol set {A, B,
C, D, E}:

s1 = AABBCCDA
s2 = ABCE

Sequence alignment of s1 and s2 might give the following
result (depending on the algorithm used):

a1 = AABBCCDA
a2 = -AB-CE--

where a1 and a2 represents the aligned sequences of s1 and
s2 respectively and ’-’ represents a gap inserted by the align-
ment algorithm.

Sequence alignment algorithms calculate similarity scores
for the elements in the sequences; high similarity will occur
at points in a score where two recognizers output the same
symbols, for instance barlines in the same place. These
scores are then used to align the sequences. When given
N sequences as input, multiple sequence alignment returns
N aligned sequences, possibly with gaps inserted. In our
case, this corresponds to N aligned scores; we will reduce
these to a single score, by letting each recognizers “vote” for
each single element in the N aligned sequences (ties broken
randomly).

3.1 Symbolic music data as a sequence

We consider music data as any sequence of elements ewhere
e is generated from the following grammar:

e := note+ | rest |barline | repeat | ending | key |
time | clef

A note above is a quadruple (p, a, o, l) where p ∈ {A, . . . , G}
is the pitch class, a ∈ {flat,natural, sharp} the alterna-
tion, o ∈ {0, . . . , 9} the octave, and l ∈ Q the duration of
the note. An element holds one or more notes, hence may
function as a chord. The notes in an element may have dif-
ferent lengths (see Fig. 4). Intuitively, the sequence has an
element for each “change” in the music. With chords con-
taining notes of different lengths, a single note missed by a
recognizer may lead to very distinct sequences of elements
for two different recognizers (this problem is addressed in
the sequence alignment, as similarity scores between ele-
ments are computed in such a way that elements that only
differ by “few” notes are counted “almost similar”).

Figure 4. Bars 11–12 of “O Christmas tree!” by E. An-
schütz . Elements of the sequence alphabet are indicated by
red outlines (accidentals and duration are included in each
element).

We consider each staff to hold a single sequence of sym-
bols, and perform sequence alignment per-staff. For sheet
music with notes where it is unclear to which staff a given
note belongs, different recognizers may assign notes to dif-
ferent staves, negatively affecting subsequent sequence align-
ment.

3.2 Progressive sequence alignment of symbolic music
data and voting

We briefly outline the method for multiple sequence align-
ment below. Note that our choice of algorithms is not due
to any intrinsic properties of symbolic music; the employed
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algorithms could very likely be replaced by other algorithms
from the sequence alignment literature without detrimental
effect to correctness or performance.

Due to its tradeoff between speed and precision, we em-
ploy progressive multiple sequence alignment [16] in which
(a) pair-wise alignment of all sequence-pairs is performed,
followed by (b) computation of a similarity-scoreD for each
pair, and (c) the two most similar are aligned first, producing
two new sequences that are then (d) progressively aligned
with the remaining sequences in descending order of simi-
larity score.

Progressive alignment is greedy and non-optimal–as op-
posed to dynamic programming methods–but is significantly
faster. For pairwise alignment, we use the classic Needleman-
Wunsch algorithm [11]. This method finds the alignment of
two sequences s1 and s2 of length k and l by first creat-
ing the similarity matrix M defined by the (k + 1, l + 1)-
dimensional matrix Mi,j where M0,j = g · j, and

Mi,j = max

∣∣∣∣∣∣
Mi−1,j−1 + α(s1[i], s2[j])
Mi−1,j + g
Mi,j−1 + g

(1)

where i ∈ {0, 1, ..., k}, j ∈ {0, 1, ..., l}, the function
α(x, y) returns a score based on whether the two elements
x and y are similar or not, and g is the gap penalty which
is the score of inserting a gap into one of the sequences. In
addition, the algorithm maintains a trace matrix T of iden-
tical dimensions. This matrix holds information about how
the value of each element in M was found. If for example
the value of M1,2 is M0,1 + α(s1[1], s2[2]), T1,2 will hold
the coordinates (0,1).

For two musical elements e1, e2, we define their similar-
ity as α(e1, e2) = d if the elements are completely distinct,
and α(e1, e2) = ks/n if the elements are similar, where
n is the combined number of symbols in e1 and e2, and k
is the number of symbols they have in common (note that
notes of identical pitch, but different length are counted as
being distinct). The parameters g, d and s can be set accord-
ing to preference or performance. All our experiments were
conducted with g = −2, d = −1 and s = 1. To avoid spuri-
ous “elements” containing notes in combinations with time
signatures, bar lines or clefs, such combinations were heav-
ily penalized by setting their similarity scores effectively to
−∞.

When the matricesM and T have been constructed, pair-
wise alignment proceeds by following the path from Tk,l

back to T0,0 using the coordinates stored in the cells of T .
In the example above, the returned solution is a1 = ABBCE,
a2 = A--CD.

To extend the pairwise alignment to multiple alignent, a
so-called guide is constructed that specifies the sequence in
which pairwise alignments are performed. The guide is con-
structed by the standard technique of neighbor-joining [14].

A B B C E
0 -2 -4 -6 -8 -10

A -2 1 -1 -3 -5 -7
C -4 -1 0 -2 -2 -4
D -6 -3 -2 -1 -3 -3

Figure 5. A similarity matrix M using input strings
s1 =ABBCE and s2 =ACD.

A B B C E
(0,0) (0,1) (0,2) (0,3) (0,4)

A (0,0) (0,0) (1,1) (1,2) (1,3) (1,4)
C (1,0) (1,1) (1,1) (1,2) (2,2) (1,3) (2,4)
D (2,0) (2,1) (2,1) (2,2) (2,2) (2,3) (3,3) (2,4)

Figure 6. The trace matrix T corresponding to the similar-
ity matrix from Figure 5. Entry Ti,j holds the coordinates
of the entry that led to the value of the lower-right entry
of M . Multiple coordinates in an entry give rise to multi-
ple paths. The path corresponding to the optimal solution
is highlighted in bold: ((2,4) → (1,3) → (1,2) → (1,1) →
(0,0)).

For every position in the set of N aligned sequences, we
collect all symbols from all sequences and their count. For
a symbol to be included in the final output, it must have an
absolute majority (exceptions are clefs and time signatures
that only need half the votes, as we found that the existing
recognizers tend to miss them).

4. EXPERIMENT

We collected a corpus (Corpus A) of 25 scanned, public do-
main, one-page pieces of western classical music. The cor-
pus consisted solely of western classical music ranked in
5 groups of 5 each according to quality (1 worst, 5 best;
see Fig. 7). The corpus was composed prior to any OMR
scanning by the various recognizers; the music ranged from
1–15 staves with either chords or multiple voices present in
most staves. We supplemented Corpus A by acquiring the
24 scanned pages from the original study of Byrd et al. [6]
(Corpus B). This corpus consisted mostly of high-quality
scans (qualities 3–5 on our scale) with mostly a single voice
on a single staff. In both corpora, we employed 300DPI
scans, using the “uncleaned” scans of Corpus B. We ap-
plied the four commercial products to the combined corpus
A+B, using Finale Songwriter 2010 to read the output Mu-
sicXML, and performed error counts by hand.

4.1 Error counting

Error counting in OMR is notoriously difficult and ambigu-
ous [3, 4, 6, 9]. Droettboom and Fujinaga [9] and Bellini et
al. [4] argue that error counting at the level of atomic sym-
bols such as noteheads, flags etc. is markedly different from
the case with composite symbols (beamed notes, chords,
etc.), and that a single error in an atomic symbol may cause
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Figure 7. Scores of quality 5 (left: Bar 12 of “God save the
Queen” by T.A. Arne) and quality 1 (right: Staff 3, Bar 17
of “La Baladine Caprice” by C.B. Lysberg).

numerous errors in composite symbols out of proportion.
In addition, there are inherent ambiguities in error counting
(see Tab. 1). There appears to be no consensus in the lit-
erature on the “correct” way to resolve ambiguities, so we
chose as a guideline that the sound (pitch, duration, etc.) of
the music should be preserved, that is, if a recognizer fails
to read symbols correctly, but replaces them with identically
sounding ones (e.g. replacing a whole note rest by two half
note rests), we do not count it as an error. However, to avoid
penalizing OMR tools for missing the beginning clef or key
signature (in which case most or all of the notes in the piece
would be counted as in error), we only count one error for
such a miss. For potential ambiguities in the error count,
we followed a strict disambiguation procedure, described in
Table 1 along with their resolution.

Original score Post-OMR score Ambiguity (A) and Resolution (R)

«« « A: Unclear which of the two notes is miss-
ing. R: Count one note missing error.

Ù
« A: Note has been misread both in duration

and pitch. R: Counts as one note error.

«�
«

A: Unclear which note is missing and which
note has been transposed. R: Count one
missing note and one transformed note,
yielding two errors.

Ù
Ù
Ù Ù

Ù
A: Unclear which of three notes is missing.
R: Count one missing note and one trans-
formed note, yielding two errors.

A ��� ÙÙ Ù
A: Unclear how the remaining notes after
missing clef should be read. R: Count one
missing clef, no note errors, yielding one er-
ror.

Ù� Ù Ù
Ù Ù Ù Ù

Ù A: Unclear of the effect of the missing sharp
pitch. R: Missing accidentals results in note
errors for every alterated note within the tab,
yielding two errors.

�� �� ����� A: Unclear how to count the added acciden-
tals. R: The MusicXiMpLe format adds the
extra accidentals, and these are denoted for
each note. This yields no errors

Ù Ù ÿ� ÿ� A: The resulting document from conversion
to MusicXiMpLe breaks beams. R: Cos-
metic issue, yields no errors.

Table 1. (Non-exhaustive) list of common ambiguities for
error counts and their resolution

4.2 Qualitative assessment

Naked-eye inspection during error counts revealed that all
recognizers have errors on most pages. Furthermore, the
combined recognizer seems to perform better on Corpus B
than on Corpus A, containing mostly single-staff, single-
voice music. It would thus appear that sequence alignment
and voting is impaired by chords, and that a refined distance
metric between “similar” chords is needed. Another oppor-
tunity for improvement is that the sequence alignment is af-
fected negatively if several recognizers misread a clef: All
notes will be dissimilar, to the detriment of the alignment al-
gorithm; this problem could possibly be avoided by letting
each recognizer output using a notation format or relative
pitch notation, rather than a music format (where pitches
are absolute).

4.3 Quantitative assessment

For testing whether one recognizer significantly outperformed
the other, we performed an experiment with our two cor-
pora (N = 49). To avoid spurious assumptions about the
normality of the error rate of each recognizer, we eschewed
parametric tests and instead performed (a) non-parametric
Friedman tests on the ensemble of all tools, (b) sign tests
on each pair of recognizers against the null hypothesis that
applying a pair of recognizers to a random score the recog-
nizers are equally likely to yield fewer errors than the other.
Both tests avoid debatable comparisons of the absolute num-
ber of errors per page, comparing only the relative number
of errors for each pair of recognizers. Tests were performed
at significance level of p < .05.

Ranking the five recognizers from least errors (rank 1)
to most errors (rank 5), the combined recognizer (CR) per-
formed best on average: CR: 2.43, Sharpeye: 2.83, Smart-
score: 2.86, Photoscore: 3.26, Capella-Scan: 3.62. The
Friedman test showed a significant difference in the set of
ranks of the five recognizers (χ2 = 16.286, df = 4, p =
.003). A post-hoc sign test with Bonferroni correction only
yielded significance for the pair CR vs. Capella-Scan (Z =
−3.166, p < .005). The sign test on all pairs of recogniz-
ers yielded significant results for CR vs. Photoscore (Z =
−1.960, p = .049), CR vs. Capella (Z = −3.166, p =
.001), and Capella-Scan vs. Sharpeye (Z = −2.261, p =
.023), while the remaining pairwise comparisons were non-
significant.

The results suggest that Capella-Scan often made more
errors than the remaining tools, and that Sharpeye often made
fewer errors. The sign test also revealed that none of the
recognizers consistently outperform each other, for exam-
ple in the 46 scores that both recognizers were able to scan,
Capella-Scan had fewer errors than Sharpeye in 14, 2 ties,
and more errors in 30.

While the average rankings of the tools suggest that the
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combined recognizer generally performs better, the fact that
we can only give reasonable statistical evidence for this sup-
position for two of the commercial tools tempers the conclu-
sion somewhat. We have little doubt that given a test corpus
of scores in the hundreds we would obtain significant differ-
ences for the remaining tools, but clearly the improvement is
small. Even for high-quality (4 and 5) scores, all recognizers
had error counts above 0 (only on a single score in Corpus
B did every tool perform spotlessly). It appears that fully-
automated, error-free music recognition is not possible and
that human post-correction is almost invariably warranted.

5. CONCLUSION AND FUTURE WORK

We have shown that a simple OMR system based on multi-
ple recognizers and sequence alignment can outperform the
commercially available tools. Our results confirm the ear-
lier work of Byrd et al. suggesting that recognizers may be
improved somewhat by sequence alignment and voting, but
that more elaborate methods may be needed to obtain sub-
stantial improvements. For future work, we suggest tack-
ling dynamics, slurs, articulations, ornaments, arpeggiated
chords, and other embellishments. We advocate the estab-
lishment of sizable online repositories of scores both for
benchmarking multiple recognizers and for the output of
such systems (i.e., reliable, error-free scores), using a suit-
able interchange format, e.g. [10].
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