
12th International Society for Music Information Retrieval Conference (ISMIR 2011)

CHROMA TOOLBOX: MATLAB IMPLEMENTATIONS FOR EXTRACTING
VARIANTS OF CHROMA-BASED AUDIO FEATURES

Meinard M üller
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ABSTRACT

Chroma-based audio features, which closely correlate to the
aspect of harmony, are a well-established tool in processing
and analyzing music data. There are many ways of comput-
ing and enhancing chroma features, which results in a large
number of chroma variants with different properties. In this
paper, we present a chroma toolbox [13], which contains
MATLAB implementations for extracting various types of
recently proposed pitch-based and chroma-based audio fea-
tures. Providing the MATLAB implementations on a well-
documented website under a GNU-GPL license, our aim is
to foster research in music information retrieval. As an-
other goal, we want to raise awareness that there is no sin-
gle chroma variant that works best in all applications. To
this end, we discuss two example applications showing that
the final music analysis result may crucially depend on the
initial feature design step.

1. INTRODUCTION

It is a well-known phenomenon that human perception of
pitch is periodic in the sense that two pitches are perceived
as similar in “color” if they differ by an octave. Based on
this observation, a pitch can be separated into two com-
ponents, which are referred to astone height andchroma,
see [19]. Assuming the equal-tempered scale, the chromas
correspond to the set{C, C♯, D, . . . , B} that consists of the
twelve pitch spelling attributes1 as used in Western music
notation. Thus, a chroma feature is represented by a12-
dimensional vectorx = (x(1), x(2), . . . , x(12))T , where
x(1) corresponds to chromaC, x(2) to chromaC♯, and so

1 Note that in the equal-tempered scale different pitch spellings suchC♯

andD♭ refer to the same chroma.
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Figure 1. Overview of the feature extraction pipeline.

on. In the feature extraction step, a given audio signal is
converted into a sequence of chroma features each express-
ing how the short-time energy of the signal is spread over
the twelve chroma bands.

Identifying pitches that differ by an octave, chroma fea-
tures show a high degree of robustness to variations in
timbre and closely correlate to the musical aspect of har-
mony. This is the reason why chroma-based audio fea-
tures, sometimes also referred to as pitch class profiles, are
a well-established tool for processing and analyzing music
data [1, 5, 12]. For example, basically every chord recog-
nition procedure relies on some kind of chroma represen-
tation [2, 4, 11]. Also, chroma features have become the
de facto standard for tasks such as music synchronization
and alignment [7, 8, 12], as well as audio structure analy-
sis [16]. Finally, chroma features have turned out to be a
powerful mid-level feature representation in content-based
audio retrieval such as cover song identification [3, 18] or
audio matching [10, 15].

There are many ways for computing chroma-based audio
features. For example, the conversion of an audio record-
ing into a chroma representation (or chromagram) may be
performed either by using short-time Fourier transforms in
combination with binning strategies [1] or by employing
suitable multirate filter banks [12]. Furthermore, the prop-
erties of chroma features can be significantly changed by
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introducing suitable pre- and post-processing steps modify-
ing spectral, temporal, and dynamical aspects. This leads to
a large number of chroma variants, which may show a quite
different behavior in the context of a specific music analysis
scenario.

In this paper, we introduce a chroma toolbox, which has
recently been released under a GNU-GPL license, see [13].
This well-documented toolbox contains MATLAB imple-
mentations for extracting various types of recently intro-
duced pitch-based and chroma-based audio features (re-
ferred to asPitch, CP, CLP, CENS, andCRP), see also Fig-
ure 1 for an overview. In Section 2, we give a short sum-
mary on how the various feature types are computed while
discussing the role of the most important parameters that
can be used to modify the features’ characteristics. Then, in
Section 3, we describe the functions of the toolbox for fea-
ture extraction, visualization, and post-processing. Onepar-
ticular goal of this paper is to emphasize the importance of
the feature design step by showing that the results of a spe-
cific music analysis task may crucially depend on the used
chroma type. To this end, we discuss in Section 4 two illus-
trative example applications, namely chord recognition and
audio matching.

2. FEATURE EXTRACTION

In this section, we give an overview on how the various fea-
ture types contained in the chroma toolbox are computed.
As illustration, Figure 3 shows the resulting feature repre-
sentations for an audio recording of the first six measures of
Op. 100, No. 2 by Friedrich Burgmüller.

2.1 Pitch Representation

As basis for the chroma feature extraction, we first decom-
pose a given audio signal into88 frequency bands with
center frequencies corresponding to the pitchesA0 to C8
(MIDI pitches p = 21 to p = 108). To obtain a suffi-
cient spectral resolution for the lower frequencies, one ei-
ther needs a low sampling rate or a large temporal win-
dow. In our toolbox, we employ a constantQ multirate filter
bank using a sampling rate of22050 Hz for high pitches,
4410 Hz for medium pitches, and882 Hz for low pitches,
see [12] for details. The employed pitch filters possess a
relatively wide passband, while still properly separatingad-
jacent notes thanks to sharp cutoffs in the transition bands,
see Figure 2. Actually, the pitch filters are robust to devia-
tions of up to±25 cents2 from the respective note’s center
frequency. To avoid large phase distortions, we use forward-
backward filtering such that the resulting output signal has
precisely zero phase distortion and a magnitude modified by
the square of the filter’s magnitude response, see [17].

2 Thecent is a logarithmic unit to measure musical intervals. The semi-
tone interval of the equally-tempered scale equals 100 cents.
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Figure 2. Magnitude responses in dB for some of the filters of the
multirate pitch filter bank. The shown filters correspond to MIDI
pitchesp ∈ [69 : 93] (with respect to the sampling rate4410 Hz).

In the next step, for each of the88 pitch subbands, we
compute the short-time mean-square power (i. e., the sam-
ples of each subband output are squared) using a window of
a fixed length and an overlap of50 %. For example, using
a window length of 200 milliseconds leads to a feature rate
of 10 Hz (10 features per second). The resulting features,
which we denote asPitch, measure the short-time energy
content of the audio signal within each pitch subband. We
refer to Figure 3c for an illustration and to [12] for details.

2.2 Tuning

To account for the global tuning of a recording, one needs
to suitably shift the center frequencies of the subband-filters
of the multirate filter bank. To this end, we compute an
average spectrogram vector and derive an estimate for the
tuning deviation by simulating the filterbank shifts using
weighted binning techniques similar to [5]. In our toolbox,
we have pre-computed six different multirate filter banks
corresponding to a shift ofσ ∈

{
0, 1

4 , 1
3 , 1

2 , 2
3 , 3

4

}
semi-

tones, respectively. From these filter banks, the most suit-
able one is chosen according to the estimated tuning devia-
tion.

2.3 CP Feature

From the pitch representation, one obtains a chroma repre-
sentation simply by adding up the corresponding values that
belong to the same chroma. For example, to compute the
entry corresponding to chroma C, one adds up values cor-
responding to the musical pitches C1, C2,. . ., C8 (MIDI
pitchesp = 24, 36, . . . , 108). For each window, this yields
a 12-dimensional vectorx = (x(1), x(2), . . . , x(12))T ,
wherex(1) corresponds to chromaC, x(2) to chromaC♯,
and so on. The resulting features are referred to asChroma-
Pitch and denoted byCP, see Figure 3d.

2.4 Normalization

To achieve invariance in dynamics, one can normalize
the features with respect to some suitable norm. In
the following, we only consider theℓp-norm defined by

||x||p :=
( ∑12

i=1 |x(i)|p
)1/p

for a given chroma vectorx =
(x(1), x(2), . . . , x(12))T and some natural numberp ∈ N.
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To avoid random energy distributions occurring during pas-
sages of very low energy (e. g., passages of silence before
the actual start of the recording or during long pauses), we
replace a chroma vectorx by the uniform vector of norm
one in case||x||p falls below a certain threshold. Note that
the casep = 2 yields the Euclidean norm and the casep = 1
the Manhattan norm. If not specified otherwise, all chroma
vectors to be considered are normalized with respect to the
Euclidean norm, see also Figure 3e.

2.5 CLP Features

To account for the logarithmic sensation of sound inten-
sity [20], one often applies a logarithmic amplitude com-
pression when computing audio features. To this end, each
energy valuese of the pitch representation is replaced by the
valuelog(η · e + 1), whereη is a suitable positive constant.
Then, the chroma values are computed as explained in Sec-
tion 2.3. The resulting features, which depend on the com-
pression parameterη, are referred to asChroma-Log-Pitch
and denoted byCLP[η], see Figure 3f. Note that a similar
flattening effect can be achieved by spectral whitening tech-
niques, where the pitch subbands are normalized according
to short-time variances in the subbands [5, 9].

2.6 CENS Features

Adding a further degree of abstraction by considering short-
time statistics over energy distributions within the chroma
bands, one obtainsCENS (Chroma Energy Normalized
Statistics) features, which constitute a family of scalable
and robust audio features. These features have turned out
to be very useful in audio matching and retrieval applica-
tions [10, 15]. In computingCENS features, each chroma
vector is first normalized with respect to theℓ1-norm thus
expressing relative energy distribution. Then, a quantization
is applied based on suitably chosen thresholds. Here, choos-
ing thresholds in a logarithmic fashion introduces some kind
of logarithmic compression as above, see [15] for details. In
a subsequent step, the features are further smoothed over a
window of lengthw ∈ N and downsampled by a factor of
d, see Section 2.8. The resulting features are normalized
with respect to theℓ2-norm and denoted byCENSw

d , see also
Figure 3g and Figure 3h for illustrations.

2.7 CRP Features

To boost the degree of timbre invariance, a novel family of
chroma-based audio features has been introduced in [14].
The general idea is to discard timbre-related information
as is captured by the lower mel-frequency cepstral coef-
ficients (MFCCs). Starting with thePitch features, one
first applies a logarithmic compression and transforms the
logarithmized pitch representation using a DCT. Then, one
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Figure 3. Score and various feature representations for an audio
recording of the first four measures of Op. 100, No. 2 by Friedrich
Burgmüller.
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Filename Main parameters Description
wav_to_audio.m – Import of WAV files and conversion to expected audio format.
estimateTuning.m pitchRange Estimation of the filterbank shift parameterσ.
audio_to_pitch_via_FB.m winLenSTMSP Extraction of pitch features from audio data.
pitch_to_chroma.m applyLogCompr, factorLogCompr̂= η Derivation ofCP andCLP features fromPitch features.
pitch_to_CENS.m winLenSmootĥ= w, downsampSmootĥ= d Derivation ofCENS features fromPitch features.
pitch_to_CRP.m coeffsToKeep̂= n, factorLogCompr̂= η Derivation ofCRP features fromPitch features.
smoothDownsampleFeature.m winLenSmootĥ= w, downsampSmootĥ= d Post-processing of features: smoothing and downsampling.
normalizeFeature.m p Post-processing of features:ℓp-normalization (default:p = 2).
visualizePitch.m featureRate Visualization of pitch features.
visualizeChroma.m featureRate Visualization of chroma features.
visualizeCRP.m featureRate Specialized version of visualizeChroma forCRP features.
generateMultiratePitchFilterbank.m – Generation of filterbanks (used inaudio_to_pitch_via_FB.m).

Table 1. Overview of the MATLAB functions contained in the chroma toolbox [13].

only keeps the upper coefficients of the resulting pitch-
frequency cepstral coefficients (PFCCs), applies an inverse
DCT, and finally projects the resulting pitch vectors onto
12-dimensional chroma vectors, which are then normalized
with respect to theℓ2-norm. These vectors are referred to
as CRP (Chroma DCT-Reduced log Pitch) features. The
upper coefficients to be kept are specified by a parameter
n ∈ [1 : 120]. As reported in [14], the parametern = 55
yields good results and constitutes our default stetting. The
resulting features are denoted byCRP[n], see Figure 3i. Note
that opposed to the previously introduced chroma variants,
CRP features may have negative entries.

2.8 Smoothing

As already mentioned in Section 2.6, one can further pro-
cess the various chroma variants by applying smoothing and
downsampling operations. For example, subsequent vec-
tors of a feature sequences can be averaged using a slid-
ing window of sizew (given in frames) and then downsam-
pled by a factord. Starting withCENS, CP, CLP[η], and
CRP[n], the resulting features are denoted byCENS

w
d , CPw

d ,
CLP[η]wd , andCRP[n]wd , respectively. Even though being a
simple strategy, smoothing can have a significant impact on
the features’ behavior within a music analysis tasks. For ex-
ample, as reported in [15], the temporal blurring of CENS
features makes audio matching more robust to local tempo
variations. Furthermore, using the parametersw andd, one
obtains a computationally inexpensive procedure to simu-
late tempo changes on the feature level. We illustrate this
by means of a concrete example. Suppose, we start with a
chroma representation having a feature rate of10 Hz. Then
usingw = 41 andd = 10, one obtains one chroma vector
per second, each covering roughly4100 ms of the original
audio signal. Now, usingw = 53 (instead ofw = 41) and
d = 13 (instead ofd = 10) results in a temporally scaled
version of the features sequence simulating a tempo change
of 10/13 ≈ 0.77. Such tempo change strategies have been
applied successfully in the context of audio indexing [10].

3. TOOLBOX

The feature extraction components as described in Section 2
form the core of our chroma toolbox, which is freely avail-
able at the well-documented website [13] under a GNU-
GPL license. Table 1 gives an overview of the main MAT-
LAB functions along with the most important parameters.
Note that there are many more parameters not discussed in
this paper. However, for all parameters there are default set-
tings so that none of the parameters need to be specified by
the user.

To demonstrate how our toolbox can be applied, we now
discuss the code example3 shown in Table 2. Our example
starts with a call to the functionwav_to_audio, which is a
simple wrapper around MATLAB’swavread.m and converts
the input WAV file into a mono version at a sampling rate
of 22050 Hz. Furthermore, the structsideinfo is returned
containing meta information about the WAV file. In line
3, the audio data is processed byestimateTuning, which
computes an appropriate filter bank shiftσ for the record-
ing. Next, in lines5–9, Pitch features are computed. Here,
the structparamPitch is used to pass optional parameters
to the feature extraction function. If some parameters or
the whole struct are not set manually, then meaningful de-
fault settings are used. This is a general principle through-
out the toolbox. For the pitch computation,winLenSTMSP

specifies the window length in samples. Here,4410 to-
gether with a sampling frequency of22050 Hz results in
a window length corresponding to200ms of audio. Using
half-overlapped windows leads to a feature rate of10 Hz.
The filterbank shift is specified in line6 using the output
of estimateTuning. Furthermore, an internal visualization
is activated using the parametervisualize. Then, a call
to audio_to_pitch_via_FB results in a120 × N -matrix
f_pitch that constitutes thePitch features, whereN is the
number of time frames and the first dimension corresponds
to MIDI pitches. Actually, only the bands corresponding

3 This example is also contained in the toolbox as function
demoChromaToolbox.m.
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1 filename=’Systematic_Chord-C-Major_Eight-Instruments.wav’;
2 [f_audio,sideinfo]=wav_to_audio(’’,’data_WAV/’,filename);
3 shiftFB=estimateTuning(f_audio);
4
5 paramPitch.winLenSTMSP=4410;
6 paramPitch.shiftFB=shiftFB;
7 paramPitch.visualize=1;
8 [f_pitch,sideinfo]=...
9 audio_to_pitch_via_FB(f_audio,paramPitch,sideinfo);

10
11 paramCP.applyLogCompr=0;
12 paramCP.visualize=1;
13 paramCP.inputFeatureRate=sideinfo.pitch.featureRate;
14 [f_CP,sideinfo]=pitch_to_chroma(f_pitch,paramCP,sideinfo);
15
16 paramCLP.applyLogCompr=1;
17 paramCLP.factorLogCompr=100;
18 paramCLP.visualize=1;
19 paramCLP.inputFeatureRate=sideinfo.pitch.featureRate;
20 [f_CLP,sideinfo]=pitch_to_chroma(f_pitch,paramCLP,sideinfo);
21
22 paramCENS.winLenSmooth=21;
23 paramCENS.downsampSmooth=5;
24 paramCENS.visualize=1;
25 paramCENS.inputFeatureRate=sideinfo.pitch.featureRate;
26 [f_CENS,sideinfo]=pitch_to_CENS(f_pitch,paramCENS,sideinfo);
27
28 paramCRP.coeffsToKeep=[55:120];
29 paramCRP.visualize=1;
30 paramCRP.inputFeatureRate=sideinfo.pitch.featureRate;
31 [f_CRP,sideinfo]=pitch_to_CRP(f_pitch,paramCRP,sideinfo);
32
33 paramSmooth.winLenSmooth=21;
34 paramSmooth.downsampSmooth=5;
35 paramSmooth.inputFeatureRate=sideinfo.CRP.featureRate;
36 [f_CRPSmoothed,featureRateSmoothed]=...
37 smoothDownsampleFeature(f_CRP,paramSmooth);
38 parameterVis.featureRate=featureRateSmoothed;
39 visualizeCRP(f_CRPSmoothed,parameterVis);

Table 2. Code example.

to MIDI pitches21 to 108 are computed and the values of
the other bands are set to zero. Furthermore, details on the
feature configuration are appended to thesideinfo struct.
Using sideinfo to store all relevant meta information re-
lated to the feature processing pipeline constitutes a second
general principle in our toolbox.

In lines 11–31, various chroma representations are de-
rived from the pitch features. First, in lines11–14, CP

features are computed. Then, activating the logarithmic
compression usingapplyLogCompr, CLP[100] features are
computed in lines16–20. The compression level is spec-
ified in line 17 by the parameterfactorLogCompr, which
corresponds to the parameterη introduced in Section 2.5.
Next, in lines22–26, CENS215 features are computed. Here,
the parameterswinLenSmooth and downsampSmooth corre-
spond to the parametersw andd explained in Section 2.8,
respectively. Finally, in lines28–31, CRP[55] features
are computed, where the parametern of Section 2.7 cor-
responds to the lower bound of the range specified by
coeffsToKeep, see line28. Finally, the use of the function
smoothDownsampleFeature is demonstrated, where in lines
33–34 the parametersw andd are specified as for theCENS
computation. At the end of our example, we visualize the
smoothedCRP features using the functionvisualizeCRP.

4. ILLUSTRATING APPLICATIONS

To demonstrate the importance of the feature design step, we
now discuss the various chroma variants within two differ-
ent music analysis scenarios. Here, rather than commending
a specific feature type, our goal is to show how different fea-
ture variants and parameter settings may crucially influence
the final analysis results.

4.1 Chord Recognition

The computer-based harmonic analysis of music recordings
with the goal to automatically extract chord labels directly
from the given audio material constitutes a major task in
music information retrieval [2, 4, 11]. In most automated
chord recognition procedures, the given music recording is
first converted into a sequence of chroma-based audio fea-
tures and then pattern matching techniques are applied to
map the chroma features to chord labels.

We now demonstrate by a small experiment, how the fi-
nal recognition rates substantially depend on the underlying
chroma representation and parameters that control temporal
and spectral aspects. To this end, we revert to three differ-
ent pattern matching techniques. The first two approaches
are simple template-based approaches, referred to asT

b and
T
a, where the first approach uses data-independent binary

templates and the second one data-dependent average tem-
plates. As third approach, we employ hidden Markov mod-
els denoted byHMM. Using the annotated Beatles dataset
as described in [6], which consists of180 Beatles songs,
we computed recognition rates based on conventional F-
measures using 3-fold cross validation. Figure 4 shows the
recognition rates for the three pattern matching techniques
in combination with different chroma variants.

As these experimental results indicate, the used chroma
representation can have a significant influence on the chord
recognition accuracy. In particular, a logarithmic com-
pression step in the chroma extraction turns out to be cru-
cial. Furthermore, the results reveal that temporal feature
smoothing plays an important role in chord recognition–
in particular for recognizers that work in a purely frame-
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wise fashion. Here, note that the Viterbi decoding in
the HMM-based recognizer already introduces a different
kind of smoothing in the classification stage so that feature
smoothing has a less significant impact in this case.

4.2 Audio Matching

As second application scenario, we consider the task ofau-
dio matching with the goal to automatically retrieve all frag-
ments from all recordings within a large audio collection
that musically correspond to a given query audio clip [15].
In this task, one challenge is to cope with variations in tim-
bre and instrumentation as they appear in different interpre-
tations, cover songs, and arrangements of a piece of music.
In a typical procedure for audio matching, the queryQ as
well as each database recordingD are first converted into
chroma feature sequencesX(Q) and X(D), respectively.
Then, a local variant of dynamic time warping is used to lo-
cally compare the query sequenceX(Q) with the database
sequenceX(D) yielding a distance function∆. Each local
minimum of∆ close to zero indicates a fragment within the
database recording that is close to the given query, see [14]
for details.

In view of this matching application, the following two
properties of∆ are of crucial importance. On the one hand,
the semantically correct matches should correspond to local
minima of∆ close to zero thus avoiding false negatives. On
the other hand,∆ should be well above zero outside a neigh-
borhood of the desired local minima thus avoiding false
positives. In view of these requirements, the used chroma
variant plays a major role. As an illustrative example, we
consider a recording by Yablonsky of Shostakovich’s Waltz
No. 2 from theSuite for Variety Orchestra No. 1, which
is used as the database recording. The theme of this piece
occurs four times played in four different instrumentations
(clarinet, strings, trombone, tutti). Denoting the four occur-
rences byE1, E2, E3, andE4 and usingE3 as the query,
Figure 5 shows several distance functions based on differ-
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Figure 5. Several distance functions shown for the Yablonsky
recording of the Shostakovich’s Waltz No. 2 from theSuite for Va-
riety Orchestra No. 1 using the excerptE3 as query. The following
feature types were used:CP (green),CLP[100] (red),CENS4110 (blue)
andCRP[55] (black). For the query, there are4 annotated excerpts
(true matches).

ent chroma variants. Note that one expects four local min-
ima. Using conventional chroma features such asCP, the
expected local minima are not significant or not even exist-
ing. However, using the chroma variantCRP[55], one obtains
for all four true matches concise local minima, see the black
curve of Figure 5. For a detailed discussion, we refer to [14].
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