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ABSTRACT

The tuning system of a keyboard instrument is chosen so
that frequently used musical intervals sound as consonant
as possible. Temperament refers to the compromise arising
from the fact that not all intervals can be maximally con-
sonant simultaneously. Recent work showed that it is pos-
sible to estimate temperament from audio recordings with
no prior knowledge of the musical score, using a conserva-
tive (high precision, low recall) automatic transcription al-
gorithm followed by frequency estimation using quadratic
interpolation and bias correction from the log magnitude
spectrum. In this paper we develop a harpsichord-specific
transcription system to analyse over 500 recordings of solo
harpsichord music for which the temperament is specified
on the CD sleeve notes. We compare the measured temper-
aments with the annotations and discuss the differences be-
tween temperament as a theoretical construct and as a prac-
tical issue for professional performers and tuners. The im-
plications are that ground truth is not always scientific truth,
and that content-based analysis has an important role in the
study of historical performance practice.

1. INTRODUCTION

Recent years have seen a renewed interest in keyboard tem-
perament both in scholarly work [14] and in more popu-
lar literature [9]. The modern tuning literature is abundant
with detailed specifications of hundreds of different key-
board temperaments; some are directly taken from historical
manuscripts and some are based on reconstruction or specu-
lation [3,7]. A prescriptive approach taken by some scholars
and performers regards adherence to specific temperaments
as a desirable aim, and moreover, promotes the notion that
for particular styles or even particular pieces there exists the
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“right” temperament [14]. An alternative approach, not less
common amongst tuners and performers, is based on the
view that since temperament is by definition a compromise,
it is primarily a practical matter, and allows room for devia-
tions from the underlying theoretical constructs. Rather than
mistakes, such deviations are considered creative solutions
to constraints arising from different instrument characteris-
tics, inharmonicity, stylistic preferences, and the combina-
tions of keys (tonalities) played in a concert programme.

Not all harpsichord CD sleeve notes specify the temper-
ament, but when they do, there appears to be a tendency
toward the former, prescriptive, approach. It is therefore in-
triguing to analyse such recordings and explore their adher-
ence to the advertised temperaments. In this work, we anal-
yse a dataset of over 500 harpsichord recordings for which
temperament information is specified on the CD sleeve notes,
aiming to shed some light on the relation between tuning
theory and tuning practice, and more generally, on the na-
ture of human “ground truth” annotations. We extend recent
work demonstrating the feasibility of temperament estima-
tion from solo harpsichord recordings [8,18]. The proposed
system uses a conservative NMF-based automatic transcrip-
tion algorithm followed by frequency estimation using quad-
ratic interpolation and bias correction. Multiple pitch es-
timates for each pitch class are combined with a median
weighted by the pitch salience output of the transcription
system. Results show significant gaps between advertised
and actual temperaments, which can be interpreted as evi-
dence for the more pragmatic approach to tuning.

2. BACKGROUND

2.1 Temperament

For the last two centuries, the scales used in Western mu-
sic have been built predominantly upon equal temperament.
This situation has been changing since the second half of the
twentieth century, as part of the revival of interest in histor-
ical performance practice of early music on period instru-
ments, resulting in increased attention to historical, unequal
temperaments. We give a brief introduction to temperament,
referring the reader to thorough treatments elsewhere [3, 7].

Explanations of musical consonance are based on the fact
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Figure 1. Circle of fifths representations for 2 temperaments
used in this paper. The deviation of each fifth from a pure
fifth (the lighter cicle) is represented by the positions of the
darker segments. The fractions specify the distribution of
the comma between the fifths (if omitted the fifth is pure).

that listeners prefer sounds with harmonic spectra and with-
out beats [17]. For combinations of harmonic tones, the sen-
sation of consonance correlates to small integer frequency
ratios between fundamental frequencies, and particularly ra-
tios of the form n+1

n where n ≤ 5 (corresponding to the
following pure intervals for successive values of n: octave,
perfect fifth, perfect fourth, major third and minor third).

The two most consonant intervals, the octave (ratio 2
1 )

and perfect fifth (ratio 3
2 ) correspond to intervals of 12 and

7 semitones respectively in Western music. From a given
starting note, either a succession of 7 octave steps or a suc-
cession of 12 perfect fifth steps will lead to the same note.
However, ( 3

2 )12 6= 27, so it is not possible for all of these
intervals to be pure simultaneously. Temperament refers to
the various methods of adjusting some or all of the fifth in-
tervals (octaves are always kept pure) with the aim of re-
ducing the dissonance in the most commonly used intervals
in a piece or programme of music. One way of represent-
ing temperament is by the distribution of the “Pythagorean
comma” (the ratio ( 3

2 )12 : 27 ≈ 1.0136) around the cycle
of fifths (see Figure 1). For example, equal temperament
diminishes all fifths by 1

12 of a comma relative to the pure
ratio 3:2. The other common way to represent temperament
is by the frequency differences of each pitch class from their
equal tempered counterparts, which is the representation we
use in our results and analysis.

Theoretical models of temperament ignore the fact that
stringed instruments are slightly inharmonic. This means
that a pure fifth, maximally consonant when the 3rd partial
of the lower tone coincides with the 2nd partial of the upper
tone, will not correspond to a fundamental frequency ratio
of 3

2 , as the partials are not precisely at integer multiples of
the fundamental. We have shown [8] that this effect is of
the order of a fraction of a cent for the harpsichord, which is
negligible. The modelling of inharmonicity in the frequency
estimation step is however important, and this is addressed
in section 5.

2.2 Precise Frequency Estimation

Despite the vast literature on frequency and pitch detection
(reviewed in [5, 12]), there is no general purpose method
suitable for all signals and applications. Many systems as-
sume monophonicity, stationarity and/or harmonicity, none
of which hold for polyphonic harpsichord music, and only
few papers address high-precision frequency estimation to a
resolution of cents, which we require for the present work.
The highest precision is obtained using the FFT with quad-
ratic interpolation and correction of the bias due to the win-
dow function [1], which outperforms instantaneous frequency
estimation using phase information [18]. Given a local peak
ap in the log magnitude spectrum log |X(n, p)| at frame n,
that is, ap−1 < ap and ap > ap+1, then the three points
(−1, ap−1), (0, ap), and (1, ap+1) uniquely define a parabola
with maximum at:

δ =
ap−1 − ap+1

2(ap−1 − 2ap + ap+1)
(1)

where −0.5 ≤ δ ≤ 0.5 is the fractional offset from the inte-
ger bin location p. This estimate is further refined using the
following formula for bias correction, based on the window
shape and zero padding factor [1, equations 1 and 3]:

δ′ = δ + ξzδ(δ − 0.5)(δ + 0.5) (2)

where δ′ is the bias-corrected offset in bin location, z is the
zero-padding factor, ξz = c0z

−2 + c1z
−4 is the bias cor-

rection factor and the constants c0 = 0.124188 and c1 =
0.013752 were determined empirically for the Blackman-
Harris window [1, table 1].

3. DATA

The dataset used for this study consists of 526 tracks from
22 CDs and the 48 tracks from [18] 1 . Generally, the CDs
present a rather balanced sample of recorded harpsichord
music, including famous and less famous players, and a
range of composers including J. S. Bach, D. Scarlatti, F. Cou-
perin, M. Locke, and J. P. Sweelinck. The CDs provide de-
tails of the temperament used for the recordings. A few pro-
vide details of the reference frequency as well (e.g. A = 415
Hz), but this is mostly not specified. In some cases the
temperament information is precise and unambiguous, as
in “Werckmeister III” or “Sixth comma meantone with the
wolf betweenB andG[”. In other cases it is underspecified,
such as with “Neidhardt 1724”, for which different versions
exist both in the original manuscripts and in the secondary
literature, or with “Quarter comma meantone” where the
wolf interval (i.e. the widened fifth) is not specified. Some
underspecification can be resolved by convention: although
“meantone” can refer to several different temperaments –
e.g. quarter comma or fifth comma meantone – the normal
use of “meantone” without any qualification refers to quar-
ter comma meantone.

1 For details, see http://www.eecs.qmul.ac.uk/~simond/ismir11
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4. TRANSCRIPTION

Our pitch estimation algorithm in Section 5 assumes that
the existence and timing of each note is known. There-
fore a transcription system for solo harpsichord was devel-
oped, using pre-extracted harpsichord templates, NMF with
beta-divergence [13] for multiple-F0 estimation, and hidden
Markov models (HMMs) [16] for note tracking. NMF with
beta-divergence is a computationally inexpensive multiple-
F0 estimation method which has been used for piano tran-
scription [6]. It has been shown to produce reliable results
for instrument-specific transcription, being highly ranked in
the MIREX 2010 piano-only note tracking task.

4.1 Extracting Pitch Templates

Firstly, spectral templates were extracted from three differ-
ent harpsichords, from the RWC musical instrument sounds
database [11]. For extracting the note templates, the constant-
Q transform (CQT) was computed with spectral resolution
of 120 bins per octave. The standard NMF algorithm [15]
with one component was employed for template extraction:
V ≈ wh, where V ∈ Rf×n is the input CQT spectrum,
w ∈ Rf×1 is the extracted spectral template, and h ∈ R1×n

is the component gain (since only one component was set, it
corresponds to the frame energy).

For template extraction, the complete harpsichord note
range was used (F1 to F6). Thus, three spectral template
matrices were extracted, W(1),W(2),W(3) ∈ Rf×61, corre-
sponding to each harpsichord model.

4.2 Multiple-F0 estimation

For the multiple-F0 estimation step, we used the NMF al-
gorithm with beta-divergence [13]. The basic model is the
same as in the standard NMF algorithm: V ≈ WH, where
W ∈ Rf×r, H ∈ Rr×n, and r is the number of compo-
nents. The beta-divergences (or β-divergences) are a para-
metric family of distortion functions which can be used in
the NMF cost function to influence the NMF update rules
for W and H. Since in our case the spectral template matrix
is fixed, only the gains H are updated as:

h← h⊗ WT ((Wh)β−2 ⊗ v)
WT (Wh)β−1

(3)

where v ∈ Rf×1 is a single frame from the test signal and
β ∈ R the divergence parameter, set to 0.5 for this work,
as in [6]. Although the update rule (Equation 3) does not
ensure convergence, non-negativity is ensured [6].

For the harpsichord transcription case, the spectral tem-
plate matrix was created by concatenating the spectral tem-
plates from all instrument models:

W = [W(1) W(2) W(3)] (4)

thus, W ∈ Rf×183. After the NMF update rule was applied
to the input log-spectrum V, the pitch activation matrix was

created by summing the component vectors from H that cor-
respond to the same pitch p:

H′p,n = Hp,n + Hp+61,n + Hp+122,n (5)

4.3 Note tracking

Instead of simply thresholding the pitch activation H′ as was
done in [6], additional postprocessing is applied in order to
perform note smoothing and tracking. Here, the approach
used in [4] was employed, where each pitch p is modeled by
a two-state HMM, denoting pitch activity/inactivity.

The hidden state sequence for each pitch is given byQp =
{qp[t]}. MIDI files from the RWC database [11] from the
classic and jazz subgenres were employed in order to esti-
mate the state priors P (qp[1]) and the state transition matrix
P (qp[t]|qp[t− 1]) for each pitch p. For each pitch, the most
likely state sequence is given by:

Q̂p = arg max
qp[t]

∏
t

P (qp[t]|qp[t− 1])P (op[t]|qp[t]) (6)

which can be computed using the Viterbi algorithm [16].
For estimating the observation probability for each active
pitch P (op[t]|qp[t] = 1), we use a sigmoid curve which has
as input the pitch activation hp = H′p,n from the output of
the transcription model:

P (op[t]|qp[t] = 1) =
1

1 + e−(hp−λ)
(7)

where λ is a parameter that controls the smoothing (a high
value will discard pitch candidates with low energy). The
result of the HMM postprocessing step is a binary piano-
roll transcription which can be used for evaluation.

For setting the parameter λ for the harpsichord transcrip-
tion experiments, we employed a training dataset consisting
of the 7 harpsichord recordings present in the RWC classical
music database [11]. As a ground truth for the recordings,
the syncRWC MIDI files were used 2 . Since for the present
system a conservative transcription with high precision is fa-
vorable, λ was set to 0.25, which results in a false alarm rate
of 5.33% with a missed detection rate of 46.49% (see [4]
for metric definitions). An example harpsichord transcrip-
tion is shown in Figure 2, where the piano-roll transcription
of recording RWC MDB-C-2001 No. 24b is seen along with
its respective MIDI ground truth.

5. PRECISE F0 ESTIMATION

Based on the transcription results, we search for spectral
peaks corresponding to the partials of each identified note.
For identification of the correct peaks, the tuning reference
frequency and inharmonicity of the tone also need to be es-
timated. For Baroque music, the tuning reference frequency
(expressed as the fundamental frequency of the note A4) is

2 http://staff.aist.go.jp/m.goto/RWC-MDB/AIST-Annotation/SyncRWC
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Figure 2. (a) The piano-roll transcription of J.S. Bach’s
Menuet in G minor (RWC MDB-C-2001 No. 24b). (b) The
pitch ground truth of the same recording. Units on the ab-
scissa correspond to 10ms.

usually lower than the modern standard of 440 Hz. For our
data set, the CD sleeve notes mention reference frequencies
of 405, 415 and 440 Hz, with the majority of CDs not giving
any value. This introduces a problem: without knowing the
score (or at least the key) of a piece of music, it is not pos-
sible to determine the reference frequency unambiguously,
since, for example, a note with F0 around 415 Hz could be
A4 (reference 415 Hz) or G]4 (reference 440 Hz).

The tuning frequency is ascertained by the following iter-
ative process: 40 frames are selected (equally spaced through-
out the piece) and the fundamental frequency estimation stage
described below is computed, using an initial value of 440
Hz for the tuning frequency and taking the inharmonicity es-
timates from measurements of other harpsichords [8]. The
frequencies are divided by their nominal values (given the
reference frequency and assuming equal temperament), and
a weighted average of the deviations is computed. The ref-
erence frequency is updated by the result and the process is
repeated for 5 iterations, or until it converges (the update is
less than one cent) if sooner.

The inharmonicity of each note is estimated jointly with
its fundamental frequency. For a string with (ideal) funda-
mental frequency f0 and inharmonicity constant B, the fre-
quency fk of the kth partial is given by [10]:

fk = kf0
√

1 +Bk2 (8)

where the constants f0 and B depend on the physical prop-
erties of the string. Given any two partials of a note, it is
possible to solve for f0 and B, assuming the partial num-
bers are known. We compute these two parameters for each
pair of partials estimated below, and use a robust statistic,

the median over all frames and partial pairs, to estimate the
true values, using the inter-quartile range as an inverse mea-
sure of confidence in the estimates.

The fundamental frequency and inharmonicity of each
transcribed note are computed as follows:
1) Compute the STFT using the following parameters: fs =
44100 Hz, Blackman-Harris window with support size of
4096 samples (93 ms), zero padding factor z = 4 (N =
16384), and hop size of 1024 samples.
2) For each note w given by the transcription, compute an
initial estimate of the frequency fwk of partial k = 1...40
with equation 8, using the reference frequency computed
above, the inharmonicity estimate from [8], and assuming
equal temperament for the fundamental.
3) For each partial frequency, a local spectral peak in a win-
dow of ±30 cents around fwk is sought, and if found the
frequency estimate is refined as described in subsection 2.2.
4) Using the transcription, any overlapping partials are iden-
tified and deleted from the estimate, as they are likely to give
unreliable values. Partials are deemed to overlap if their fre-
quency separation is less than 3.03fsz/N [2].
5) For each pair of partials remaining, solve for F0 and B
using equation 8.
6) For each pitch class k, convert each frequency estimate
to cents deviation from equal temperament and return the
weighted median ĉk as the overall tuning value for the pitch
class, where the weights are given by the pitch activation
H′p,n (Equation 5). This gives a 12-dimensional temper-
ament vector, which can be compared with the profiles of
known theoretical temperaments. For simplicity we repre-
sent the pitch class k by an integer from 0 (C) to 11 (B),
corresponding to the MIDI pitch number modulo 12.

6. TEMPERAMENT ESTIMATION

Our temperament classifier recognises the following tem-
peraments: equal, fifth comma, Vallotti, quarter comma mean-
tone (QCMT), fifth comma meantone (FCMT), sixth comma
meantone (SCMT), Kellner, Werckmeister III, Lehman, Nei-
dhardt (1,2 and 3), Kirnberger (2 and 3) and just intonation.
We also recognise rotations of these temperaments, although
this is not a typical tuning practice for all temperaments, as
illustrated by the example of the Young II temperament, a
rotation of the Vallotti temperament, which is considered a
different temperament in its own right. Rotations are spec-
ified via the wolf interval where applicable (e.g. SCMT-FD
has wolf interval F]-D[, as in Figure 1), otherwise by the
number of semitones rotated (e.g. Vall+7).

Given the estimate ĉ = (ĉ0, . . . , ĉ11) and a temperament
profile ci = (ci0, . . . , c

i
11) for temperament i, we calculate

the divergence between estimate and profile, d(ĉ, ci):

d(ĉ, ci) =
11∑
k=0

uk(ĉk − cik − r)2∑11
j=0 uj

(9)

where uk =
∑
n

∑
p≡k mod 12 H′p,n is the weight for pitch
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class k, and r =
∑11
j=0 ui(ĉj−cij)/

∑11
j=0 uj is the offset in

cents which minimises the divergence and thus compensates
for deviations in the reference tuning frequency (pitch A4)
from the reference computed above in previous calculations.
A piece is classified as having the temperament iwhose pro-
file ci gives the least divergence d(ĉ, ci). We also consider
rotations of temperaments, ci,r, given by ci,rk = cim, where
m ≡ (k + r) mod 12, in order to deal with different posi-
tions of the wolf interval in meantone temperaments, as well
as the tuning ambiguity discussed in section 5.

7. SUMMARY OF RESULTS

The results are summarised in Table 1 3 . Column 1 is our
CD index, where letters are used to distinguish groups of
tracks with different temperament metadata. Column 2 shows
the annotated reference tuning, while the mean and stan-
dard deviation of the estimated reference tuning are given in
columns 3 and 4 respectively. Columns 5 to 8 give the an-
notated temperament, the average divergence d(ĉ, ci) from
this temperament, the most frequent highest ranked temper-
ament according to d(ĉ, ci), and the average difference in
divergence between the annotated temperament and the best
ranked temperament.

The results for tuning show agreement with the ground
truth values where they were available, with the exception
of CD 21, which had only 2 tracks at 440 Hz. The CDs gen-
erally show tuning consistency across all tracks, with high
standard deviations (> 2 Hz) being due to a bimodal dis-
tribution of tuning frequency (CD 18) and 5 outlier tracks
(CDs 2,7,19). Summarising by CD assumes fixed tuning for
all tracks, which is clearly not always the case.

The temperament results vary from close agreement to
the metadata (CDs 4,5,8,9,16,21,22) to moderate agreement
(e.g. CDs 15, 18) to disagreement (e.g. CDs 12,13, 17). An
example is shown in Figure 3. For a number of tracks it was
not possible to find a single “best fit”, as some temperaments
are only distinguished by a pitch class which does not appear
(or is not detected) within the piece. The large divergences
of CDs 2 and 19 are explained by the tuning frequency being
at the half-way point between two semitones relative to the
440 Hz reference assumed by the transcription algorithm,
making the transcriptions unreliable.

On CD 17 and some other tracks specifying QCMT, the
temperament was often closer to FCMT. This is an inter-
esting tendency, as two are fairly similar, with FCMT be-
ing milder (slightly larger major thirds and a smaller wolf
interval). It seems plausible that QCMT was intended but
then tempered to bring it (inadvertantly) closer to the less
extreme FCMT. However, the opposite tendency appears on
CD 3a. Werckmeister 3 is specified on five CDs, but only
fulfils the claim on two. The reason may be that Werck-
meister 3 is popular as a starting point for tuners while they
experiment and develop their own temperaments, or that it

3 It is not possible to fit all results into this paper. For more details,
please see: http://www.eecs.qmul.ac.uk/~simond/ismir11

Tuning Temperament
CD Not. Est. StD Notated Div. Estimated ∆Div.
1 417.6 0.2 Ordinaire Neid2
2 405 405.7 3.2 FCMT 21.8 Various 16.4
3a 416.8 0.2 SCMT-BG 3.3 FCMT-BG 2.5
3b 413.9 0.2 Kellner* 8.5 Various 1.2
3c 414.2 0.2 Kellner 3.3 Kellner 0.0
4b 416.9 0.3 FCMT-FD 1.1 FCMT-FD 0.0
5 415 417.1 0.9 QCMT 1.4 QCMT-GE 0.0
6 413.8 0.7 Late17 Vall+7
7 432.6 4.8 FCMT 7.6 Various 4.1

8b 416.8 0.4 QCMT 1.2 QCMT-GE 0.0
9 415 415.3 0.3 Neid 1.1 Neid1/2 0.0

10 415 416.5 0.4 Werck3 3.4 Various 1.7
11 415 416.6 0.6 Werck3 3.0 Various 0.9
12 415 415.3 0.2 Kirn3 11.1 Neid1 9.4
13 415 415.1 0.3 Kirn3 7.3 Neid1 5.9
14a (415) 412.7 0.3 QCMT 10.0 Various 7.0
14c (415) 435.2 0.2 QCMT 2.7 QCMT-GE 0.0
15 415.7 1.3 Werck3 3.4 Werck3 0.5
16 416.1 1.1 Werck3 0.0 Werck3 0.9
17 413.9 1.2 QCMT 6.0 FCMT 2.2
18 440.5 2.4 QCMT 5.0 QCMT-GE 2.7
19 440 447.6 5.6 QCMT 19.5 FCMT 15.2
20 412.9 0.6 Werck3 2.6 Various 0.8
21 414.5 1.6 FCMT 1.0 FCMT-GE 0.0
22 408.7 0.3 Lehman 1.1 Lehman 0.1
RH 415 415.5 0.8 Various 7.1 Various 0.3
PT 415 415.6 0.7 Various 0.1 All correct 0.0

Table 1. Summary of results, with columns for CD number,
notated reference tuning, estimated reference tuning, stan-
dard deviation across tracks of CD, notated temperament,
highest ranked temperament (Eqn 9), and average difference
in divergence d(ĉ, ci) between notated and highest ranked
temperaments. The last two rows refer to the data from [18].

is very close to other temperaments such as Kellner (note
the low value of ∆Div in each case).

Since we are claiming that CD sleeve notes are a ques-
tionable source of “ground truth”, we need an independent
means of ascertaining the reliability of our system. The bot-
tom row of Table 1 shows the results for 4 pieces recorded
with six different temperaments using the physical mod-
elling synthesiser Pianoteq [18]. Using the current approach,
these tracks were all classified correctly from the set of 180
possible temperaments (15 temperaments by 12 rotations).
Confidence in classification results can also be gained by
considering the divergence value and consistency of results
(i.e. if a number of related tracks are classified with the same
label and low divergence from the given temperament).

8. CONCLUSION

We have presented a method for analysing harpsichord tem-
perament directly from audio recordings, using an NMF-
based transcription system, followed by bias-corrected quad-
ratically interpolated short-time spectral analysis to estimate
partial frequencies, estimation of inharmonicity, deletion of
overlapping partials, and robust statistics weighted by the
pitch salience given by the transcription system. We anal-
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Figure 3. Estimated temperament profile (solid line, cir-
cles) compared with the temperament specified on the CD
(dot-dash) and that with least divergence from the estimate
(dotted line, crosses). In this case the data matches the Val-
lotti profile (d = 2.2) more closely than the specified Fifth
Comma Meantone (d = 17.1).

ysed a collection of CDs which provide metadata about the
tuning system, and found that while this information is mostly
correct, there were several cases in which another tempera-
ment matches the data more closely than the advertised one.
This is perhaps more surprising to a music theorist than to a
practising tuner or performer, reflecting the dichotomy be-
tween those who see temperament as a mathematical system
and those who have to retune their instrument during the in-
terval of a concert. This also raises an interesting issue about
the nature of human annotations and their use as “ground
truth”. The metadata provided with the CD is intended to
give an indication of the tuning system rather than scientifi-
cally accurate documentation, and we need to be discerning
in the use of metadata that has been collected for a purpose
other than scientific analysis or evaluation.
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