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ABSTRACT 

In music information retrieval, a huge search space has to 

be explored because a query audio clip can start at any posi-

tion of any music in the database, and also a query is often 

corrupted by significant noise and distortion. Audio finger-

prints have recently attracted much attention in music in-

formation retrieval, for they provide a compact representa-

tion of the perceptually relevant parts of audio signals. In 

this paper, we propose an extremely fast method of explor-

ing a huge Hamming space for audio fingerprinting systems. 

The effectiveness of the proposed method has been eva-

luated by experiments using a database of 8,740 songs. 

1. INTRODUCTION 

Just as fingerprints are used for identifying human beings, 

audio fingerprints can be used to identify music. Audio fin-

gerprints, together with a music information database, can 

be used to derive information about an unknown audio clip 

automatically, such as the names of the song, artist and al-

bum. Gracenote [1] and Midomi [2] are two well-known 

commercial services. They retrieve a song by using a few 

seconds of music clip caught by such as a PC or mobile 

phone, display the title of the song and other information, 

and also enable the user to download the song from a web-

based music store. In recent years, audio fingerprints have 

also attracted attention as a technique for copyright protec-

tion of music, such as detecting the distribution of copy-

right-infringing songs on the Internet.  

    In general, an audio clip is given as a search query, and it 

does not necessarily start at the beginning of the song. 

Therefore, a retrieval method should consider any time as a 

starting position, but this requires a long computation time. 

In order to solve this problem, fast and effective retrieval 

methods are necessary. Some efficient retrieval methods 

based on audio fingerprints have been proposed, including 

a method using a hash table [3][4] and a tree-structured re-

presentation of fingerprints [5]. 

    A query is an excerpt of a song, but it may be “corrupted” 

by being mixed with environmental noise, or it may have 

been modified by a low-pass filter. As a result, retrieval 

methods should be able to handle queries which are similar 

to, but not exactly the same as a song in the database. Lo-

cality-Sensitive Hashing (LSH) is an emerging technique 

for solving large-scale similarity retrieval in high-

dimensional spaces, and has been applied in extensive re-

search fields [6-8]. 

   In this paper, we propose a fast method for exploring a 

huge Hamming space which is suitable for audio finger-

printing systems building on the ideas of LSH. There have 

been several previous proposals on Hamming space retriev-

al methods based on LSH, however, our method uses less 

memory. The effectiveness of the proposed method is dem-

onstrated by evaluation experiments using a database of 

8,740 songs. The paper is organized as follows: Section 2 

outlines music retrieval based on audio fingerprints. We 

propose a fast music retrieval method particularly suitable 

for audio fingerprinting systems in Section 3, and evaluate 

the method in Section 4. Finally, we conclude the paper in 

Section 5. 

2. OVERVIEW OF MUSIC RETRIEVAL BASED ON 

AUDIO FINGERPRINTS 

Audio fingerprinting is a kind of message digest (one-way 

hash function), and it converts an audio signal into a rela-

tively compact representation by using acoustical and per-

ceptional characteristics of the audio signals. For message 

digesting methods used for authentication and digital signa-

tures (e.g. MD5), slight difference in the original objects 

results in totally different hash values. This means that two 

hash values mapped from an original audio signal and a 

corrupted one are completely different, which drastically 

decreases the retrieval performance for “corrupted” queries. 

However, in audio fingerprinting, similar inputs are hashed 

to similar hash values. 
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    Music retrieval based on audio fingerprinting involves 

some key problems: (1) which type of audio fingerprints to 

use, (2) how to define the distance between two fingerprints, 

and (3) how to retrieve from a huge database. We review 

these problems next. 

2.1 Audio Fingerprint Extraction  

A variety of audio fingerprint extraction algorithms have 

been proposed based on different acoustic features, such as 

Fourier coefficients [9], Mel frequency cepstral coefficients 

[10], spectral flatness [11] and so on. In particular, the fin-

gerprint extraction algorithm by Haitsma and Kalker [3] 

uses a feature of the energy difference between frequency 

bands as follows.   

    First, an input audio signal is segmented into frames, and 

then 32-bit sub-fingerprints are extracted from each over-

lapping frame. Sub-fingerprints are actually calculated in 

the frequency domain. Each frame is first converted into a 

frequency domain by using FFT, and then segmented into 

33 non-overlapping frequency bands. Next, a sub-

fingerprint is calculated by checking the sign (plus or minus) 

of the energy difference between two successive frequency 

bands. Haitsma and Kalker [3] used a frame length of 0.37 

second with an overlap factor of 31/32, so a sub-fingerprint 

was extracted for every 11.6 milliseconds. 

    The sub-fingerprints are calculated as follows: let E(n, m) 

be the power of frequency band m of frame n, then the m-th 

bit of frame n, F(n, m), is determined as: 

               
                 

                 
       ，                            

                                                                                                                                          

where 

                                    

                                           (2)            

Haitsma and Kalker [3] demonstrated that the sign of 

power differences between successive frequency bands was 

effective for identifying music, and was also robust against 

various “corrupted” inputs such as compressed or delayed 

music. The Haitsma and Kalker algorithm can be imple-

mented by simple arithmetic, while maintaining compact 

representation for generated audio fingerprints. 

2.2 Distance between Audio Fingerprints 

The sub-fingerprint is a 32-bit feature extracted from a 

frame in an input audio, and one sub-fingerprint does not 

have enough information to identify the audio. To obtain 

sufficient information, a fingerprint block, which is a se-

quence of sub-fingerprints, is used for matching audio sub-

fingerprints. A fingerprint block consisting of 256 sub-

fingerprints was used in the experiments in [3]. 

     Bit error rate is used as the distance between two finger-

print blocks. Let FA(n, m), FB(n, m) be the sub-fingerprints 

extracted from audio clips A and B respectively. The bit er-

ror rate of fingerprint block BER(A, B) of length N is for-

mally defined as: 

          
                     

      
   

   
           

The operator ^ denotes bitwise operation XOR (exclusive 

or). The numerator of Equation (3) calculates the Hamming 

distance between two fingerprint blocks, which is divided 

by the bit length of fingerprint blocks (32N). BER(A,B) is 

the error rate per bit. 

2.3 Audio Fingerprint Search 

Most music retrieval methods based on audio fingerprinting 

have the following stages. First, fingerprint blocks are ex-

tracted from each song in the database. Because of the un-

known position of the query, all variations of starting point 

should be considered. Therefore, each song allows extract-

ing quite a number of fingerprint blocks by shifting all the 

frames to fingerprint blocks one by one. When a query is 

given, many fingerprint blocks are also extracted from the 

query. Thus, music retrieval involves finding the fingerprint 

block in the database that is most similar to the fingerprint 

block derived from the query. 

     The search space of audio fingerprinting is huge. For 

example, a fingerprint database containing 10,000 songs 

each with an average length of 5 minutes would result in 

approximately 250 million fingerprint blocks in total using 

the algorithm in [3]. The number of distance calculations 

would be several to several dozen times as large as 250 mil-

lion by brute-force search taking account of matching the 

fingerprint blocks. Many ways of reducing the number of 

calculations have been proposed, such as using a hash table 

(lookup table) for sub-fingerprints [3], a tree-structured re-

presentation of sub-fingerprints [5], and a hash table con-

sisting of peak values in the frequency domain and duration 

between the two peaks [4]. However, with these methods 

the size of the hash table grows rapidly with the bit error 

rates between the query and songs in the database increas-

ing. 

3. FAST HAMMING SPACE SEARCH FOR AUDIO 

FINGERPRINTS 

In this section, we propose a fast retrieval method for audio 

fingerprinting systems. Suppose that audio fingerprints are 

represented by binary bit vectors, and the Hamming dis-

tance is used for the distance between two audio finger-

prints. We first outline the search methods for Hamming 

space based on LSH in Section 3.1, and then propose a new 

retrieval method in Section 3.2. 
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3.1 Locality-Sensitive Hashing 

Locality-Sensitive Hashing (LSH) is a hashing scheme for 

probabilistic searches of large-scale high-dimensional data, 

rather than a specific algorithm. It includes the hashing me-

thod for Hamming distance using bit sampling [6], the me-

thod for Jaccard distance using min-wise independent per-

mutation [12], the method based on random projection for 

cosine distance [13], and the method using p-stable distri-

bution for Lp distance [14]. The concept of LSH is to map 

the high-dimensional vector data into hash values so that 

similar data are mapped to the same hash values with high 

probability. Generally, we cannot find a hash function 

which gives the same hash values for similar high-

dimensional data. LSH can maintain certain retrieval accu-

racy by using multiple hash functions. 

    There are a few Locality-Sensitive Hashing schemes 

proposed to reduce the problem in the Hamming space. In-

dyk and Motwani proposed an LSH algorithm for Ham-

ming space based on the Point Location in Equal Balls 

(PLEB) problem [15], and Charikar [13] and Ravichandran 

[16] improved the algorithm by using random permutations 

of binary vectors. 

    The concept of random permutations is as follows: given 

a set of n vectors D = {d1, d2, …, dn}, where each vector 

consists of k binary bits, permutation   is defined as a bijec-

tion on {1, 2, …, k}, and then we can define that the bit 

vector                     is a permutation of           . 

The number of permutations for k bits is k!, hence a random 

permutation is a random selection from these k! permuta-

tions. 

   We can now create the data set    by permuting all bits 

by using   for all elements in the data set D, and also calcu-

late the new query vector    from the query vector q in the 

same way. The most similar vector to    can be found in 

the data set    by doing the following steps: Sort    in lex-

icographic order, and then perform the binary search. The 

binary search is carried out from the first bit to the last bit, 

so if a different bit is located in the upper side (near the first 

bit), then the search makes a mistake. On the other hand, if 

a different bit is located in the lower side, the search can 

find the nearest vector. We expect to find the most similar 

vector by making a number of random permutations   

and corresponding data set   , and searching for all data 

sets. This is an overview of the LSH for Hamming space 

proposed by Charikar [13] and Ravichandran [16]; the de-

tails of the theories and experimental analysis of this me-

thod are discussed in [13] and [17]. 

3.2 Fast Hamming Space Search Method for Audio 

Fingerprints 

The principle of the Hamming space search based on ran-

dom permutations is simple. The binary search can certain-

ly find the exact vector if there exists one vector the same 

as the query. A similar vector which has a few different bits 

in the lower side can be found, too, but the problem is that 

sometimes it cannot find a similar vector which has a few 

different bits in the upper side. To address this problem, 

random permutations are used. In general, LSH-based me-

thods use multiple hash functions. In the Hamming space 

search based on the random permutation method, multiple 

random permutations can be regarded as multiple hash 

functions.  
   The greatest disadvantage of the retrieval method based 

on random permutations is the requirement for a huge 

amount of memory in order to perform many random per-

mutations on the original database in advance. This in-

creases the size of database required to at least several to 

several dozen times larger than the size of the original data-

base. 

If we could only multiplex the query vectors without 

multiplexing the database vectors, then Hamming space 

searching would require little memory. Based on this as-

sumption, we propose a new search method by modifying 

the query vector into many similar vectors. 

     The scheme of the search method based on random per-

mutations is shown in Figure 1, and that of the proposed 

method is shown in Figure 2. In the random permutation 

method, multiple random permutations (  ,           in 

Figure 1) are applied to both the original database and 

query vector in order to solve the problem of search omis-

sions. On the other hand, in the proposed method, only the 

query is multiplexed through the functions (  ,           

in Figure 2). The definition of functions    is necessarily 

application-dependent. 

    The proposed method is based on the sub-fingerprint 

matching scheme, and functions    create the multiplexed 

search queries of sub-fingerprint sequences from the query 

audio clip. Many sub-fingerprints are extracted by shifting 

the query into frames. Moreover, there exists a great simi-

larity between the overlapping sub-fingerprints in the se-

quence of sub-fingerprint, so that multiplexed sub-

fingerprints with slight differences can be obtained as start-

ing time of frame moving down. These sub-fingerprints are 

used for queries multiplexing, which make it possible to 

search for a song without modifying the original database 

by using random permutations. 

   The flow of the proposed method is as follows: first, es-

timate several candidates of starting position in the database 

those using sub-fingerprints obtained from the query. Then, 

calculate the Hamming distance (bit error rate) for the fin-

gerprint blocks of query music data and estimated candi-

dates. Usually one sub-fingerprint does not contain suffi-

cient information for music identification, so a sequence of  
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Figure 1. Schematic diagram of search based on random 

permutations 

 

 

 

 

Figure 2. Schematic diagram of search based on query 

multiplexing 

 

sub-fingerprints (SSF) is used. In this paper, the length of 

the SSF is set to 3 (3 sub-fingerprints, containing 96 bits in 

total). 

A schematic diagram of the SSF search is shown in 

Figure 3. The sub-fingerprints obtained from all the songs 

of the database are denoted by FP = (FP1, FP2, …, FPn). 

As stated above, we can get many SSFs in certain length by 

changing the starting position of fingerprint. Let m be the 

length of each SSF, and the SSFs are constructed from 

   in such a way that SSF1 = (FP1, FP2,…, FPm), SSF2 = 

(FP2, FP3,…, FPm+1) and the i-th sub-fingerprint sequence 

SSFi = (FPi, FPi+1,…, FPi+m-1).  All the SSFs are sorted by 

value and the sorted positions of SSFs are stored in a one-

dimensional array S = S1, S2, …, Sn-m+1. Array S, similar to 

the suffix array [18],  contains the indexes to    and satis-  

       
Figure 3. Schematic diagram of SSF search 

 

fies the following: 

Sj = i    iff    SSFi = (FPi, FPi+1,…, FPi+m-1)  is the     

   j-th SSF in sorted order.                      (4) 

 

In the search step, a binary search is performed on array 

S for all the SSFs extracted from the query audio clip. Most 

similar SSF can be found by checking the neighborhood 

positions of the searched block in array S. 

Array S is used as an index for music retrieval. The size 

of the index is proportional to the length of the sub-

fingerprint sequence in the database, so it requires much 

less memory/storage compared with the method based on 

random permutations. 

The proposed method can be summarized as follows: 

(1) Extract the sub-fingerprint sequence FP from query 

music. 

(2) For all SSFs, find candidate positions by performing a 

binary search on array S. 

(3) Set the start position of the FP to the candidate posi-

tion, and calculate the Hamming distance (bit error 

rate) between FP and the fingerprint block corres-

ponding to the SSF. 

(4) Output the top n songs as the final results. 

 

4. EVALUATION EXPERIMENTS 

To evaluate the effectiveness of the proposed method, real 

music data were used for evaluation experiments. In these 

experiments, the algorithm proposed by Haitsma and Kalk-

er [3] was used for extracting audio fingerprints in different 

acoustical analysis settings. 

4.1 Music Data 

The database had 8,740 songs in mp3 format from CDs or 

the Internet. The compression ratio was different for each 
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song. There were many genres in the database such as pop, 

classical, and folk music. 

       
Category Notes Audio Accuracy 

 

Original 

music 
 

Non-

noise 

PV music faithful to the 

original music with little 

noise if any. 

 

104 

 

96.2% 

With 

noise 

Declared to be original 

but with obvious noise. 

 

22 

 

100% 

 

Live data 

Live audio, most of which 

contain voices, cheer-
ing and applause, and 

other noise. 

 

142 

 

83.1% 

 

Table 1. Results on evaluation data 

 

Music clips uploaded to YouTube were used for the 

queries. Audio data were extracted from various types of 

videos, such as promotional video and live video. Many of 

the music data were of poor quality, including music fol-

lowing and followed by long silences, and music with vari-

ous types of noise such as hand-clapping, cries of excite-

ment, and other environmental noise. 268 songs were used 

for evaluation data, which are roughly classified by hand. 

Details of the evaluation data are shown in Table 1. 

4.2 Acoustical Analysis Settings 

After down-sampling to 4,000 Hz, the music data were 

segmented into frames by using a Hamming window. The 

frame length was set to 1.024 seconds and the frame shift to 

32 milliseconds. All frames were converted into the fre-

quency domain by FFT. The frequency domain was divided 

into 33 frequency bands, and 32-bit sub-fingerprint features 

were extracted. The length of the fingerprint block was set 

to 128. 

Although these settings seem rough compared with those 

given by Haitsma and Kalker [3], these parameters were 

determined by many preliminary experiments and the re-

sulting proposed algorithm gave a high accuracy. The total 

number of sub-fingerprints was about 70 million. 

 

4.3 Experimental Results 

Experiments were carried out on a PC (DELL Precision 

M6500) with an Intel Core i7 CPU (1.73 GHz) (8 cores) 

and 4 GB of memory. Retrieval times varied as the query 

music, and each song was retrieved in approximately 0.4 to 

0.6 seconds. 

   The length of the sub-fingerprint sequence for one query 

music was approximately from 6,000 to 8,000 fingerprints. 

The proposed algorithm searches candidate positions by a 

binary search for all SSFs (length was 3) extracted from the 

query music before calculating the bit error rate of finger-

print blocks. Therefore, we believe that the algorithm is 

competent and fast since the retrieval time per SSF did not 

exceed 0.1 milliseconds. 

    The top-1 retrieval accuracy is shown in the right column 

of Table 1. The retrieval rate for “original music” was 

98.6%, and accuracy for “live music” was 83.1%. The dif-

ference was due to the different melody of the live clip 

from that of the original music. The evaluation data of 

“original music” can be divided into two classes with re-

gard to noise, but the results did not show any influence of 

noise.  

5. CONCLUTIONS 

In this paper, we have proposed a fast Hamming space 

search method for audio fingerprinting systems. Our me-

thod is inspired by Locality-Sensitive Hashing (LSH), a 

probabilistic algorithm for solving the nearest neighbor 

search in high-dimensional spaces. LSH uses multiple hash 

functions to maintain high retrieval accuracy and therefore 

requires a large amount of memory/storage for saving hash 

tables. For the Hamming space search, LSH must maintain 

multiple database sets created by random permutations. On 

the other hand, the proposed method created multiplexed 

search queries of sub-fingerprint sequence with different 

starting time, and does not require expansion of the data-

base. As a result, a large amount of memory/storage is not 

needed. Experimental results showed that the proposed me-

thod delivers accurate, fast retrieval. 

6. REFERENCES 

[1] Gracenote: available from http://www.gracenote.com/. 

[2] Midomi: available from http://www.midomi.com/. 

[3] Jaap Haitsma and Ton Kalker: “Highly Robust Audio 

Fingerprinting System,” Proceedings of the 3rd 

International Conference on Music Information 

Retrieval (ISMIR 2002), pp.107–115, 2002. 

[4] Avery Li-Chun Wang: “An Industrial-Strength Audio 

Search Algorithm,” Proceedings of the 4
th
 

International Conference on Music Information 

Retrieval (ISMIR 2003), pp.7–13, 2003. 

[5] Matthew L. Miller, Manuel Acevedo Rodriguez, and 

Ingemar J. Cox: “Audio Fingerprinting: Nearest 

Neighbor Search in High Dimensional Binary Spaces,” 

Journal of VLSI Signal Processing, Vol. 41, No. 3, 

pp.285-291, 2005. 

[6] Aristides Gionis, Piotr Indyk, and Rajeev Motwani: 

“Similarity Search in High Dimensions via Hashing,” 

25th International Conference on Very Large Data 

Bases (VLDB 1999), pp.518–529, 1999. 

137



Poster Session 1  

 

[7] Brian Kulis and Trevor Darrell: “Learning to Hash 

with Binary Reconstructive Embeddings,” 

Proceedings of the 23rd Annual Conference on Neural 

Information Processing Systems (NIPS 2009), 

pp.1042–1050, 2009. 

[8] Brian Kulis and Kristen Grauman: “Kernelized LSH 

for Scalable Image Search,” Proceedings of the 12th 

IEEE International Conference on Computer Vision 

(ICCV 2009), pp.2130–2137, 2009. 

[9] Dimitrios Fragoulis, George Rousopoulos, Thanasis 

Panagopoulos, Constantin Alexiou, and Constantin 

Papaodysseus: “On the Automated Recognition of 

Seriously Distorted Musical Recordings,” IEEE 

Transactions on Signal Processing, Vol. 49, No. 4, 

pp.898–908, 2001. 

[10] Beth Logan: “Mel Frequency Cepstral Coefficients for 

Music Modeling,” Proceedings of the International 

Symposium on Music Information Retrieval (ISMIR 

2000), pp.11–23, 2000. 

[11] Eric Allamanche et al.: “AudioID: Towards Content-

based Identification of Audio Material,” Proceedings 

of  the 110th AES Convention, 2001. 

[12] Andrei Z. Broder, Moses Charikar, Alan M. Frieze, 

and Michael Mitzenmacher: “Min-wise Independent 

Permutations,” Proceedings of the 30th Annual ACM 

Symposium on Theory of Computing, pp.327–336, 

1998. 

[13] Moses S. Charikar: “Similarity Estimation Techniques 

from Rounding Algorithms,” Proceedings of the 34th 

Annual ACM Symposium on Theory of Computing, 

pp.380–388, 2002. 

[14] Mayur Datar, Nicole Immorlica, Piotr Indyk, and 

Vahab S. Mirrokni: “Locality-Sensitive Hashing 

Scheme Based on p-Stable Distributions,” 

Proceedings of the 20
th
 Annual Symposium on 

Computational Geometry, pp.253–262, 2004. 

[15] Piotr Indyk and Rajeev Motwani: “Approximate 

Nearest Neighbors: Towards Removing the Curse of 

Dimensionality,” Proceedings of the 30th Annual 

ACM Symposium on Theory of Computing, pp.604–

613, 1998. 

[16] Deepak Ravichandran, Patrick Pantel, and Eduard 

Hovy: “Randomized Algorithms and NLP: Using 

Locality Sensitive Hash Functions for High Speed 

Noun Clustering,” Proceedings of ACL, pp.622–629, 

2005. 

[17] Gurmeet Singh Manku, Arvind Jain, and Anish Das 

Sarma: “Detecting Near-Duplicates for Web Crawling,” 

Proceedings of the 16th international conference on 

World Wide Web, pp.141–149, 2007. 

[18] Udi Manber and Gene Myers: “Suffix Arrays: A New 

Method for On-line String Searches,” SIAM Journal 

on Computing, Vol. 22, No. 5, pp.935–948, 1993. 

 

 

 

 

 

 

 

 

138


