
12th International Society for Music Information Retrieval Conference (ISMIR 2011)

FAST HAMMING SPACE SEARCH FOR AUDIO

FINGERPRINTING SYSTEMS

Qingmei Xiao Motoyuki Suzuki Kenji Kita

Faculty of Engineering, The University of Tokushima

Tokushima 770-8506, Japan
xiaoqingmei@iss.tokushima-u.ac.jp, moto@m.ieice.org,

kita@is.tokushima-u.ac.jp

ABSTRACT

In music information retrieval, a huge search space has to

be explored because a query audio clip can start at any posi-

tion of any music in the database, and also a query is often

corrupted by significant noise and distortion. Audio finger-

prints have recently attracted much attention in music in-

formation retrieval, for they provide a compact representa-

tion of the perceptually relevant parts of audio signals. In

this paper, we propose an extremely fast method of explor-

ing a huge Hamming space for audio fingerprinting systems.

The effectiveness of the proposed method has been eva-

luated by experiments using a database of 8,740 songs.

1. INTRODUCTION

Just as fingerprints are used for identifying human beings,

audio fingerprints can be used to identify music. Audio fin-

gerprints, together with a music information database, can

be used to derive information about an unknown audio clip

automatically, such as the names of the song, artist and al-

bum. Gracenote [1] and Midomi [2] are two well-known

commercial services. They retrieve a song by using a few

seconds of music clip caught by such as a PC or mobile

phone, display the title of the song and other information,

and also enable the user to download the song from a web-

based music store. In recent years, audio fingerprints have

also attracted attention as a technique for copyright protec-

tion of music, such as detecting the distribution of copy-

right-infringing songs on the Internet.

 In general, an audio clip is given as a search query, and it

does not necessarily start at the beginning of the song.

Therefore, a retrieval method should consider any time as a

starting position, but this requires a long computation time.

In order to solve this problem, fast and effective retrieval

methods are necessary. Some efficient retrieval methods

based on audio fingerprints have been proposed, including

a method using a hash table [3][4] and a tree-structured re-

presentation of fingerprints [5].

 A query is an excerpt of a song, but it may be “corrupted”

by being mixed with environmental noise, or it may have

been modified by a low-pass filter. As a result, retrieval

methods should be able to handle queries which are similar

to, but not exactly the same as a song in the database. Lo-

cality-Sensitive Hashing (LSH) is an emerging technique

for solving large-scale similarity retrieval in high-

dimensional spaces, and has been applied in extensive re-

search fields [6-8].

 In this paper, we propose a fast method for exploring a

huge Hamming space which is suitable for audio finger-

printing systems building on the ideas of LSH. There have

been several previous proposals on Hamming space retriev-

al methods based on LSH, however, our method uses less

memory. The effectiveness of the proposed method is dem-

onstrated by evaluation experiments using a database of

8,740 songs. The paper is organized as follows: Section 2

outlines music retrieval based on audio fingerprints. We

propose a fast music retrieval method particularly suitable

for audio fingerprinting systems in Section 3, and evaluate

the method in Section 4. Finally, we conclude the paper in

Section 5.

2. OVERVIEW OF MUSIC RETRIEVAL BASED ON

AUDIO FINGERPRINTS

Audio fingerprinting is a kind of message digest (one-way

hash function), and it converts an audio signal into a rela-

tively compact representation by using acoustical and per-

ceptional characteristics of the audio signals. For message

digesting methods used for authentication and digital signa-

tures (e.g. MD5), slight difference in the original objects

results in totally different hash values. This means that two

hash values mapped from an original audio signal and a

corrupted one are completely different, which drastically

decreases the retrieval performance for “corrupted” queries.

However, in audio fingerprinting, similar inputs are hashed

to similar hash values.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that cop-

ies bear this notice and the full citation on the first page.

© 2011 International Society for Music Information Retrieval

133

Poster Session 1

 Music retrieval based on audio fingerprinting involves

some key problems: (1) which type of audio fingerprints to

use, (2) how to define the distance between two fingerprints,

and (3) how to retrieve from a huge database. We review

these problems next.

2.1 Audio Fingerprint Extraction

A variety of audio fingerprint extraction algorithms have

been proposed based on different acoustic features, such as

Fourier coefficients [9], Mel frequency cepstral coefficients

[10], spectral flatness [11] and so on. In particular, the fin-

gerprint extraction algorithm by Haitsma and Kalker [3]

uses a feature of the energy difference between frequency

bands as follows.

 First, an input audio signal is segmented into frames, and

then 32-bit sub-fingerprints are extracted from each over-

lapping frame. Sub-fingerprints are actually calculated in

the frequency domain. Each frame is first converted into a

frequency domain by using FFT, and then segmented into

33 non-overlapping frequency bands. Next, a sub-

fingerprint is calculated by checking the sign (plus or minus)

of the energy difference between two successive frequency

bands. Haitsma and Kalker [3] used a frame length of 0.37

second with an overlap factor of 31/32, so a sub-fingerprint

was extracted for every 11.6 milliseconds.

 The sub-fingerprints are calculated as follows: let E(n, m)

be the power of frequency band m of frame n, then the m-th

bit of frame n, F(n, m), is determined as:

 ，

where

 (2)

Haitsma and Kalker [3] demonstrated that the sign of

power differences between successive frequency bands was

effective for identifying music, and was also robust against

various “corrupted” inputs such as compressed or delayed

music. The Haitsma and Kalker algorithm can be imple-

mented by simple arithmetic, while maintaining compact

representation for generated audio fingerprints.

2.2 Distance between Audio Fingerprints

The sub-fingerprint is a 32-bit feature extracted from a

frame in an input audio, and one sub-fingerprint does not

have enough information to identify the audio. To obtain

sufficient information, a fingerprint block, which is a se-

quence of sub-fingerprints, is used for matching audio sub-

fingerprints. A fingerprint block consisting of 256 sub-

fingerprints was used in the experiments in [3].

 Bit error rate is used as the distance between two finger-

print blocks. Let FA(n, m), FB(n, m) be the sub-fingerprints

extracted from audio clips A and B respectively. The bit er-

ror rate of fingerprint block BER(A, B) of length N is for-

mally defined as:

The operator ^ denotes bitwise operation XOR (exclusive

or). The numerator of Equation (3) calculates the Hamming

distance between two fingerprint blocks, which is divided

by the bit length of fingerprint blocks (32N). BER(A,B) is

the error rate per bit.

2.3 Audio Fingerprint Search

Most music retrieval methods based on audio fingerprinting

have the following stages. First, fingerprint blocks are ex-

tracted from each song in the database. Because of the un-

known position of the query, all variations of starting point

should be considered. Therefore, each song allows extract-

ing quite a number of fingerprint blocks by shifting all the

frames to fingerprint blocks one by one. When a query is

given, many fingerprint blocks are also extracted from the

query. Thus, music retrieval involves finding the fingerprint

block in the database that is most similar to the fingerprint

block derived from the query.

 The search space of audio fingerprinting is huge. For

example, a fingerprint database containing 10,000 songs

each with an average length of 5 minutes would result in

approximately 250 million fingerprint blocks in total using

the algorithm in [3]. The number of distance calculations

would be several to several dozen times as large as 250 mil-

lion by brute-force search taking account of matching the

fingerprint blocks. Many ways of reducing the number of

calculations have been proposed, such as using a hash table

(lookup table) for sub-fingerprints [3], a tree-structured re-

presentation of sub-fingerprints [5], and a hash table con-

sisting of peak values in the frequency domain and duration

between the two peaks [4]. However, with these methods

the size of the hash table grows rapidly with the bit error

rates between the query and songs in the database increas-

ing.

3. FAST HAMMING SPACE SEARCH FOR AUDIO

FINGERPRINTS

In this section, we propose a fast retrieval method for audio

fingerprinting systems. Suppose that audio fingerprints are

represented by binary bit vectors, and the Hamming dis-

tance is used for the distance between two audio finger-

prints. We first outline the search methods for Hamming

space based on LSH in Section 3.1, and then propose a new

retrieval method in Section 3.2.

134

12th International Society for Music Information Retrieval Conference (ISMIR 2011)

3.1 Locality-Sensitive Hashing

Locality-Sensitive Hashing (LSH) is a hashing scheme for

probabilistic searches of large-scale high-dimensional data,

rather than a specific algorithm. It includes the hashing me-

thod for Hamming distance using bit sampling [6], the me-

thod for Jaccard distance using min-wise independent per-

mutation [12], the method based on random projection for

cosine distance [13], and the method using p-stable distri-

bution for Lp distance [14]. The concept of LSH is to map

the high-dimensional vector data into hash values so that

similar data are mapped to the same hash values with high

probability. Generally, we cannot find a hash function

which gives the same hash values for similar high-

dimensional data. LSH can maintain certain retrieval accu-

racy by using multiple hash functions.

 There are a few Locality-Sensitive Hashing schemes

proposed to reduce the problem in the Hamming space. In-

dyk and Motwani proposed an LSH algorithm for Ham-

ming space based on the Point Location in Equal Balls

(PLEB) problem [15], and Charikar [13] and Ravichandran

[16] improved the algorithm by using random permutations

of binary vectors.

 The concept of random permutations is as follows: given

a set of n vectors D = {d1, d2, …, dn}, where each vector

consists of k binary bits, permutation is defined as a bijec-

tion on {1, 2, …, k}, and then we can define that the bit

vector is a permutation of .

The number of permutations for k bits is k!, hence a random

permutation is a random selection from these k! permuta-

tions.

 We can now create the data set by permuting all bits

by using for all elements in the data set D, and also calcu-

late the new query vector from the query vector q in the

same way. The most similar vector to can be found in

the data set by doing the following steps: Sort in lex-

icographic order, and then perform the binary search. The

binary search is carried out from the first bit to the last bit,

so if a different bit is located in the upper side (near the first

bit), then the search makes a mistake. On the other hand, if

a different bit is located in the lower side, the search can

find the nearest vector. We expect to find the most similar

vector by making a number of random permutations

and corresponding data set , and searching for all data

sets. This is an overview of the LSH for Hamming space

proposed by Charikar [13] and Ravichandran [16]; the de-

tails of the theories and experimental analysis of this me-

thod are discussed in [13] and [17].

3.2 Fast Hamming Space Search Method for Audio

Fingerprints

The principle of the Hamming space search based on ran-

dom permutations is simple. The binary search can certain-

ly find the exact vector if there exists one vector the same

as the query. A similar vector which has a few different bits

in the lower side can be found, too, but the problem is that

sometimes it cannot find a similar vector which has a few

different bits in the upper side. To address this problem,

random permutations are used. In general, LSH-based me-

thods use multiple hash functions. In the Hamming space

search based on the random permutation method, multiple

random permutations can be regarded as multiple hash

functions.
 The greatest disadvantage of the retrieval method based

on random permutations is the requirement for a huge

amount of memory in order to perform many random per-

mutations on the original database in advance. This in-

creases the size of database required to at least several to

several dozen times larger than the size of the original data-

base.

If we could only multiplex the query vectors without

multiplexing the database vectors, then Hamming space

searching would require little memory. Based on this as-

sumption, we propose a new search method by modifying

the query vector into many similar vectors.

 The scheme of the search method based on random per-

mutations is shown in Figure 1, and that of the proposed

method is shown in Figure 2. In the random permutation

method, multiple random permutations (, in

Figure 1) are applied to both the original database and

query vector in order to solve the problem of search omis-

sions. On the other hand, in the proposed method, only the

query is multiplexed through the functions (,

in Figure 2). The definition of functions is necessarily

application-dependent.

 The proposed method is based on the sub-fingerprint

matching scheme, and functions create the multiplexed

search queries of sub-fingerprint sequences from the query

audio clip. Many sub-fingerprints are extracted by shifting

the query into frames. Moreover, there exists a great simi-

larity between the overlapping sub-fingerprints in the se-

quence of sub-fingerprint, so that multiplexed sub-

fingerprints with slight differences can be obtained as start-

ing time of frame moving down. These sub-fingerprints are

used for queries multiplexing, which make it possible to

search for a song without modifying the original database

by using random permutations.

 The flow of the proposed method is as follows: first, es-

timate several candidates of starting position in the database

those using sub-fingerprints obtained from the query. Then,

calculate the Hamming distance (bit error rate) for the fin-

gerprint blocks of query music data and estimated candi-

dates. Usually one sub-fingerprint does not contain suffi-

cient information for music identification, so a sequence of

135

Poster Session 1

Figure 1. Schematic diagram of search based on random

permutations

Figure 2. Schematic diagram of search based on query

multiplexing

sub-fingerprints (SSF) is used. In this paper, the length of

the SSF is set to 3 (3 sub-fingerprints, containing 96 bits in

total).

A schematic diagram of the SSF search is shown in

Figure 3. The sub-fingerprints obtained from all the songs

of the database are denoted by FP = (FP1, FP2, …, FPn).

As stated above, we can get many SSFs in certain length by

changing the starting position of fingerprint. Let m be the

length of each SSF, and the SSFs are constructed from

 in such a way that SSF1 = (FP1, FP2,…, FPm), SSF2 =

(FP2, FP3,…, FPm+1) and the i-th sub-fingerprint sequence

SSFi = (FPi, FPi+1,…, FPi+m-1). All the SSFs are sorted by

value and the sorted positions of SSFs are stored in a one-

dimensional array S = S1, S2, …, Sn-m+1. Array S, similar to

the suffix array [18], contains the indexes to and satis-

Figure 3. Schematic diagram of SSF search

fies the following:

Sj = i iff SSFi = (FPi, FPi+1,…, FPi+m-1) is the

 j-th SSF in sorted order. (4)

In the search step, a binary search is performed on array

S for all the SSFs extracted from the query audio clip. Most

similar SSF can be found by checking the neighborhood

positions of the searched block in array S.

Array S is used as an index for music retrieval. The size

of the index is proportional to the length of the sub-

fingerprint sequence in the database, so it requires much

less memory/storage compared with the method based on

random permutations.

The proposed method can be summarized as follows:

(1) Extract the sub-fingerprint sequence FP from query

music.

(2) For all SSFs, find candidate positions by performing a

binary search on array S.

(3) Set the start position of the FP to the candidate posi-

tion, and calculate the Hamming distance (bit error

rate) between FP and the fingerprint block corres-

ponding to the SSF.

(4) Output the top n songs as the final results.

4. EVALUATION EXPERIMENTS

To evaluate the effectiveness of the proposed method, real

music data were used for evaluation experiments. In these

experiments, the algorithm proposed by Haitsma and Kalk-

er [3] was used for extracting audio fingerprints in different

acoustical analysis settings.

4.1 Music Data

The database had 8,740 songs in mp3 format from CDs or

the Internet. The compression ratio was different for each

First song

fingerprints

Second song

fingerprints
…………

SSF2 SSF3

FP1 FP2 FP3 FP4 FP5 ……… FPi FPi+1 FPi+2 …… FPn

………

……

…

Multiplexed

queries

generation
Query

Retrieval data

sort

…

…

…

00…0 11…0

…

…

…

01…0 11…0

11…0

Binary search

11…0

01…0 10…0

11…0

sort

Binary search

Query 11…0

sort

…

…

…

10…0 10…1 …

…

…

01…0 11…1 …

…

…

01…0 11…1

…

…

…

10…1 10…0 …

…

…

01…0 11…1 …

…

…

11…1 01…0

…

…

…

01…0 11…0

sort

01…1 11…1

Random

permutations

Random

permutations

FP ……

3 2 n-2 i
i

i

… … … … … … … …

… … …

Query clip
010 … … … … … … … … 110

96 bits

... ...
Binary search

SSF1
SSFi SSFn-2

Sorted positions
S

Last song

fingerprints

136

12th International Society for Music Information Retrieval Conference (ISMIR 2011)

song. There were many genres in the database such as pop,

classical, and folk music.

Category Notes Audio Accuracy

Original

music

Non-

noise

PV music faithful to the

original music with little

noise if any.

104

96.2%

With

noise

Declared to be original

but with obvious noise.

22

100%

Live data

Live audio, most of which

contain voices, cheer-
ing and applause, and

other noise.

142

83.1%

Table 1. Results on evaluation data

Music clips uploaded to YouTube were used for the

queries. Audio data were extracted from various types of

videos, such as promotional video and live video. Many of

the music data were of poor quality, including music fol-

lowing and followed by long silences, and music with vari-

ous types of noise such as hand-clapping, cries of excite-

ment, and other environmental noise. 268 songs were used

for evaluation data, which are roughly classified by hand.

Details of the evaluation data are shown in Table 1.

4.2 Acoustical Analysis Settings

After down-sampling to 4,000 Hz, the music data were

segmented into frames by using a Hamming window. The

frame length was set to 1.024 seconds and the frame shift to

32 milliseconds. All frames were converted into the fre-

quency domain by FFT. The frequency domain was divided

into 33 frequency bands, and 32-bit sub-fingerprint features

were extracted. The length of the fingerprint block was set

to 128.

Although these settings seem rough compared with those

given by Haitsma and Kalker [3], these parameters were

determined by many preliminary experiments and the re-

sulting proposed algorithm gave a high accuracy. The total

number of sub-fingerprints was about 70 million.

4.3 Experimental Results

Experiments were carried out on a PC (DELL Precision

M6500) with an Intel Core i7 CPU (1.73 GHz) (8 cores)

and 4 GB of memory. Retrieval times varied as the query

music, and each song was retrieved in approximately 0.4 to

0.6 seconds.

 The length of the sub-fingerprint sequence for one query

music was approximately from 6,000 to 8,000 fingerprints.

The proposed algorithm searches candidate positions by a

binary search for all SSFs (length was 3) extracted from the

query music before calculating the bit error rate of finger-

print blocks. Therefore, we believe that the algorithm is

competent and fast since the retrieval time per SSF did not

exceed 0.1 milliseconds.

 The top-1 retrieval accuracy is shown in the right column

of Table 1. The retrieval rate for “original music” was

98.6%, and accuracy for “live music” was 83.1%. The dif-

ference was due to the different melody of the live clip

from that of the original music. The evaluation data of

“original music” can be divided into two classes with re-

gard to noise, but the results did not show any influence of

noise.

5. CONCLUTIONS

In this paper, we have proposed a fast Hamming space

search method for audio fingerprinting systems. Our me-

thod is inspired by Locality-Sensitive Hashing (LSH), a

probabilistic algorithm for solving the nearest neighbor

search in high-dimensional spaces. LSH uses multiple hash

functions to maintain high retrieval accuracy and therefore

requires a large amount of memory/storage for saving hash

tables. For the Hamming space search, LSH must maintain

multiple database sets created by random permutations. On

the other hand, the proposed method created multiplexed

search queries of sub-fingerprint sequence with different

starting time, and does not require expansion of the data-

base. As a result, a large amount of memory/storage is not

needed. Experimental results showed that the proposed me-

thod delivers accurate, fast retrieval.

6. REFERENCES

[1] Gracenote: available from http://www.gracenote.com/.

[2] Midomi: available from http://www.midomi.com/.

[3] Jaap Haitsma and Ton Kalker: “Highly Robust Audio

Fingerprinting System,” Proceedings of the 3rd

International Conference on Music Information

Retrieval (ISMIR 2002), pp.107–115, 2002.

[4] Avery Li-Chun Wang: “An Industrial-Strength Audio

Search Algorithm,” Proceedings of the 4
th

International Conference on Music Information

Retrieval (ISMIR 2003), pp.7–13, 2003.

[5] Matthew L. Miller, Manuel Acevedo Rodriguez, and

Ingemar J. Cox: “Audio Fingerprinting: Nearest

Neighbor Search in High Dimensional Binary Spaces,”

Journal of VLSI Signal Processing, Vol. 41, No. 3,

pp.285-291, 2005.

[6] Aristides Gionis, Piotr Indyk, and Rajeev Motwani:

“Similarity Search in High Dimensions via Hashing,”

25th International Conference on Very Large Data

Bases (VLDB 1999), pp.518–529, 1999.

137

Poster Session 1

[7] Brian Kulis and Trevor Darrell: “Learning to Hash

with Binary Reconstructive Embeddings,”

Proceedings of the 23rd Annual Conference on Neural

Information Processing Systems (NIPS 2009),

pp.1042–1050, 2009.

[8] Brian Kulis and Kristen Grauman: “Kernelized LSH

for Scalable Image Search,” Proceedings of the 12th

IEEE International Conference on Computer Vision

(ICCV 2009), pp.2130–2137, 2009.

[9] Dimitrios Fragoulis, George Rousopoulos, Thanasis

Panagopoulos, Constantin Alexiou, and Constantin

Papaodysseus: “On the Automated Recognition of

Seriously Distorted Musical Recordings,” IEEE

Transactions on Signal Processing, Vol. 49, No. 4,

pp.898–908, 2001.

[10] Beth Logan: “Mel Frequency Cepstral Coefficients for

Music Modeling,” Proceedings of the International

Symposium on Music Information Retrieval (ISMIR

2000), pp.11–23, 2000.

[11] Eric Allamanche et al.: “AudioID: Towards Content-

based Identification of Audio Material,” Proceedings

of the 110th AES Convention, 2001.

[12] Andrei Z. Broder, Moses Charikar, Alan M. Frieze,

and Michael Mitzenmacher: “Min-wise Independent

Permutations,” Proceedings of the 30th Annual ACM

Symposium on Theory of Computing, pp.327–336,

1998.

[13] Moses S. Charikar: “Similarity Estimation Techniques

from Rounding Algorithms,” Proceedings of the 34th

Annual ACM Symposium on Theory of Computing,

pp.380–388, 2002.

[14] Mayur Datar, Nicole Immorlica, Piotr Indyk, and

Vahab S. Mirrokni: “Locality-Sensitive Hashing

Scheme Based on p-Stable Distributions,”

Proceedings of the 20
th
 Annual Symposium on

Computational Geometry, pp.253–262, 2004.

[15] Piotr Indyk and Rajeev Motwani: “Approximate

Nearest Neighbors: Towards Removing the Curse of

Dimensionality,” Proceedings of the 30th Annual

ACM Symposium on Theory of Computing, pp.604–

613, 1998.

[16] Deepak Ravichandran, Patrick Pantel, and Eduard

Hovy: “Randomized Algorithms and NLP: Using

Locality Sensitive Hash Functions for High Speed

Noun Clustering,” Proceedings of ACL, pp.622–629,

2005.

[17] Gurmeet Singh Manku, Arvind Jain, and Anish Das

Sarma: “Detecting Near-Duplicates for Web Crawling,”

Proceedings of the 16th international conference on

World Wide Web, pp.141–149, 2007.

[18] Udi Manber and Gene Myers: “Suffix Arrays: A New

Method for On-line String Searches,” SIAM Journal

on Computing, Vol. 22, No. 5, pp.935–948, 1993.

138

