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ABSTRACT 

A music retrieval system that matches a short length music 
query with its variations in a database is proposed. In order 
to avoid the negative effects of different orchestration and 
performance style and tempo on transcription and match-
ing, a mid-level representation schema and a tonal model-
ing approach is used. The mid-level representation ap-
proach transcribes the music pieces into a sequence of mu-
sic tags corresponding to major and minor triad labels. 
From the transcribed sequence, n-gram models are built to 
statistically represent the harmonic progression. For re-
trieval, a perplexity based similarity score is calculated be-
tween each n-gram in the database and that for the query.  
The retrieval performance of the system is presented for a 
dataset of 2000 classical music pieces modeled using n-
grams of sizes 2 through 6.  We observe improvements in 
retrieval performance with increasing query length and n-
gram order. The improvement converges to a little over one 
for all query lengths tested when n reaches 6. 

1. INTRODUCTION 
Due to advances in computer and network technologies, the 
development of efficient multimedia data storage and re-
trieval applications have received much attention in recent 
years. In the music domain, motivations for such systems 
can vary from industry objectives such as royalty rights 
management to individual use such as personal database 
organization, music preference list creation, etc.  Due to the 
wide range of expressive and instrumental variations possi-
ble in music pieces, in order for such systems to have the 
necessary performance reliability as to be useful in the in-
dustrial domain, music variation matching must be ad-
dressed. A number of challenges such as feature extraction, 
representation, tempo and key variability, need to be han-
dled with high precision in order to achieve reasonable per-
formances.  

To eliminate the kinds of differences caused by expres-
sive variations or instrumental arrangements of the same 
music piece, researchers have focused on accurately ex-

tracting the types of musical content in which such varia-
tions have minimal or no effect.  

A considerable amount of research focused on the tran-
scription of music signal to MIDI or piano roll representa-
tion for accurate understanding of the note sequence of the 
music. Numerous researchers have modeled sound events 
with known machine learning techniques, in order to detect 
musical notes and their onset and offset times [1,2,3,4 and 
5]. Their results are promising, although not accurate 
enough to provide an extension to a general solution for 
music variations matching.  

Since accurate transcription of multi channel audio is not 
easy, a mid level representation of music is desired. Recent 
research attempts in [6,7 and 8] showed that different repre-
sentation techniques such as extracting the salient melody 
or a chord progression from the music piece could be a 
feasible solutions for polyphonic representation since har-
monic structure tends note to change dramatically with ex-
pressive and instrumental deviations.  

On the other hand, some researchers focused on extract-
ing fingerprints that carry information about the acoustic 
feature distribution of the music piece over time. [9 and 10]  
used chroma based features to directly represent music 
pieces, without labeling and used simple cross correlation 
of chroma vectors for measuring similarity. Kim also 
adopted delta features that represent general movement in 
the harmonic structure of music pieces for more accurate 
representation and retrieval [11].  

Pickens et. al [13] used existing polyphonic transcription 
systems in the literature to abstract note features from mu-
sic audio. The transcription was then mapped to the har-
monic domain. A bi-gram (2-gram) representation, namely 
a 24 × 24 triad (three-note chord) transition matrix was 
used to represent both the query and the music pieces in the 
database. A distance metric between an input transition ma-
trix and the transition matrices available in the database 
was calculated to determine similarity.  

Our study differs from other researchers' who use some 
kind of mid level representation in the similarity metric we 
use, and in that we use a sliding window approach in our 
transcription independent of the exact locations of note on-
sets and offsets. While our strategy loses note level details 
in the audio, it makes our representation more robust to 
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note transcription errors.  In contrast to the retrieval me-
thods reported in  [12 and 13] we tested our model on not 
only bi grams but also higher order n-grams, for n up to and 
including 6, and observed a major boost in the retrieval per-
formance with increasing Markov chain order.   

In later studies, Lavrenko & Pickens [14] used random 
fields to model polyphonic music pieces from MIDI files. 
Using random fields, they automatically induced new high 
level features from the music pieces, such as consonant and 
dissonant chords, progressions and repetitions, to efficiently 
model polyphonic music information.  

The F-measure, Correct Retrieval Accuracy, and Mean 
Reciprocal Rank are used to measure the performance of 
the systems available in the literature. The reported results 
vary with respect to the database selected, its size and the 
complexity of the variations available. Since the algorithms 
used are generally computationally expensive, the experi-
mental databases tend not to be larger than a couple of 
thousand songs. For a more detailed overview of the sys-
tems available in the literature, please refer to [18].   

Most systems, including the ones described above, were 
designed assuming the availability of the entire query and 
target songs from beginning to end. To our knowledge, no 
tests were reported when only short length queries are 
present. In this work, a mid level tonal representation of 
audio and a statistical tonal modeling method for perform-
ing retrieval of short length audio queries is proposed.  

In order to ensure robust transcription against musical 
variations, a 3 dimensional Tonal Space (TS), a toroidal 
version of the Spiral Array model [15] is used. The details 
are explained in Section 2. 12 dimensional Pitch Class Pro-
file (PCP) features are mapped onto the TS and a centroid 
(center of weight) is calculated in order to find the repre-
sentative position of each audio frame in 3D space. A 1-
nearest neighborhood classifier is used for identifying the 
centroids of each frame with respect to triad chord classes. 
A key and tempo invariant time series of triad chord labels 
are then acquired, from which we derive n-gram representa-
tions of each music piece in the database. The similarity 
between the extracted triad series and the n-gram models is 
calculated using the perplexity measure. The flowchart of 
the proposed system can be seen in Figure 1. The paper 
concludes with the explanation of the experimental setup, 
the results and the discussion on future work. 
 

 
Figure 1. Flowchart for the proposed system.  

2. TONAL MUSIC SPACE 

There exists an illustrious history of mathematical and mu-
sic theoretic work on geometric modeling of tonal relation-
ships between pitches, intervals, chords, and keys. A re-
view of these models can be found in [16].  

We use a toroidal version of the Spiral Array for a num-
ber of reasons.  We are interested in a flexible tonal repre-
sentation that combines different tonal features in the same 
space.  The Spiral Array clusters tonal objects that are 
harmonically close; this is especially important for robust 
analysis of audio without exact transcription. 

The model consists of a series of nested helices in three-
dimensional space. The outermost spiral consists of pitch 
classes that form the line or circle of fifths. Pitch classes 
are placed at each quarter turn of the spiral, so that vertical-
ly aligned pitch classes are a major third apart. This net-
work of pitches is identical to the neo-Riemannian tonnetz 
shown in Figure 2. Pitch classes that are in the same triads 
are closely clustered, as are those that are in the same key. 
Chord representations are generated as weighted combina-
tions, a kind of centroid, of their component pitch classes, 
and key representations are constructed from their I, IV, 
and V chords. The details and applications of the Spiral 
Array model are explained in [15][17]. 

 
Figure 2. The tonnetz. Perfect 5th, Major 3rd and Minor 
3rd distances 

The Spiral Array model assumes a cylindrical form to 
preserve enharmonic spellings. In contrast, we wrap the 
model into a torus so as to ignore pitch spelling. The result-
ing pitch class torus is shown in Figure 3. The 24 chord 
representations are then defined by constructing the trian-
gle outlined by each chord’s root, fifth, and third, and cal-
culating the centroid of these vertex points. A chord repre-
sentation is illustrated in Figure 3. While the toroid model 
no longer has the same kinds of symmetries and invariance 
in the cylindrical model, the chord and key regions remain 
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sufficiently distinct for geometric discrimination between 
different chords.  

 
Figure 3. Tonal Space: positions of the 12 pitch classes and 
construction of the C Maj triad chord using C, G and E. 
 

3. FEATURE EXTRACTION 

As discussed earlier, to overcome the effects of incorrect 
transcription, we use a mid level transcription approach for 
the transcription task. The goal is to accurately label each 
frame of music audio with major or minor triad chords.  For 
this, we use the tonal space described in Section 2. We now 
present our feature extraction process.  This process is out-
lined in the top row of boxes in Figure 1. 

Audio Input Frames: 250 ms audio frames with 90% 
overlap is used. A large window with a wide margin of 
overlap is preferred because our goal is to track the general 
harmonic movement and not instantaneous local changes 
that would be expected to be sensitive to variations in in-
struments and expression and thus pose problems for the 
retrieval system’s similarity calculations.  

Pitch Class Profile: 12 dimensional Pitch Class Profile 
(PCP) features are collected from each audio frame. The 
pitch classes extracted range from A0 (27.5 Hz) to A7 
(3520 Hz). From the PCP's, the note weights are mapped to 
pitch class positions in the tonal space, and a centroid is 
calculated in 3D space as shown in Fig 4 (red star).  

Chord Labels: The centroid derived in the fashion de-
scribed above represents a kind of tonal center of the par-
ticular frame. The system aims to capture and record the 
movement of centroids, after they are marked with the most 
appropriate chord label. First, the system classifies the  cen-
troid as one of the triads located in the Tonal Space, using a 
straightforward 1-NN algorithm, like in [15]. The classifi-
cation boundaries are not calculated from training data, but 
deterministically defined as described in Section 2. This 
transcription strategy compensates for variations in spectral 
characteristics and intensity levels when the same notes and 
harmonies are played on different instruments.  

4. N-GRAM MODEL OF HARMONIC SEQUENCES 

We use n-grams to model the harmonic progressions of the 
music pieces. The output of the feature extraction process is 
an L length chord sequence. We describe here the normali-

zation process to make the sequence tempo and key inva-
riant. Such normalization is required because the queries 
and the matching music in the database may be in different 
keys and tempi.  

To ensure key invariance, relative chord changes are ex-
tracted from the transcribed sequence, an approach that has 
also been used by other researchers [19].   

 

 
Figure 4. Mapping from PCP to the Tonal Space. Calcula-
tion of the tonal centroid and its distance to the triad chords. 

Since the window length and overlap rate is high (250ms 
and 90%, respectively), the transcription of the harmonic 
progression contains many chord repetitions. We remove 
these repetitions so as to focus on harmonic changes, rather 
than harmonically stable parts of the music sequence. By 
doing so, tempo variations are also eliminated. The result-
ing harmony sequences thus carry more distinct informa-
tion about the harmonic progression.  

In our experiments, n-grams were selected for modeling 
harmonic progressions. Results for different n-grams are 
reported in Section 6.  The audio coverage range of a 6-
gram in our experiments is between 0.8 seconds and 2.3 
seconds. On average 1.5 seconds of music audio is 
represented by a 6-gram feature set.  

To enable the efficient use of this strategy, smoothing of 
the n-gram models is required. Smoothing is widely used to 
eliminate computational problems caused by non-existing 
n-grams in natural language processing applications. A 
Universal Background Model (UBM) is produced using the 
entire music database and mixed with each individual n-
gram model using a low weight for smoothing (0.9 vs 0.1). 
Finally, the collection of the smoothed  n-grams constitutes 
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our database. We use the SRILM toolkit [20] to create the 
n-gram models, to perform smoothing, and to evaluate the 
model. 

5. RETRIEVAL METHOD 

We use the perplexity measure to evaluate the similarity 
between the n-gram model of each music piece in the data-
base and that of the short-length query sequence. The per-
plexity measure gives the likelihood the query was generat-
ed by a specific probability distribution, namely one of the 
n-gram harmonic progression models in the database.  

The perplexity of a discrete probability distribution p can 
be defined as: 

, 

where H(p) is the entropy of the distribution. Suppose p is 
unknown. One can model the unknown distribution p using 
a training sample drawn from p. Given a proposed model q, 
one can evaluate how successfully q predicts the sample set 
{x1,x2, x3, ... xN} drawn from p using the perplexity meas-
ure.  The perplexity of the model q can be defined as: 
 

.
 

A model q that better predicts the unknown distribution p 
gives higher probabilities of q(xi), which leads to lower 
perplexity.  

Our system first builds n-gram models of the query and 
of each piece in the database. It then uses the perplexity 
measure to determine which of the harmonic progression 
models of the pieces in the database best fits the query se-
quence.   The system then returns an N-best list of the most 
likely candidates.  

6. EXPERIMENTS 

A list of 1000 classical music pieces from famous compos-
ers is selected. For each piece in the list, 2 recordings are 
acquired (one termed the “original” and the other a varia-
tion). The variation can be a different instrumental ar-
rangement of the piece or a recording of the same piece by 
another artist. We replace the ones for which we cannot 
find an additional audio recordings (CD or mp3) with audio 
synthesized from the MIDI version as the variation (about 
250 such MIDI variations are created).  All files are con-
verted to 16 kHz 16-bit wav format. All 2000 files (1000 
originals and 1000 variations) are converted to strings of 
chord labels using the method explained in Section 3. The 
original recordings are used to train n-gram harmonic pro-
gression models that constitute the database. The short 
length test queries are extracted from random parts of each 
music piece. For each of the query pieces, the system aims 
to retrieve the original recording of the target piece in the 
N-best list.  

 
  Length of the query 
  15s 25s 35s Full 
Top-1 
match 

Accuracy 37.6 41.6 42.9 51.6 
MRR - - - - 

Top-5 
match 

Accuracy 55.8 57.4 59.6 63.7 
MRR 60.4 63.6 67.4 70.1 

Top-20 
match 

Accuracy 56.8 59.6 62.6 71.5 
MRR 71.8 75.4 73.2 79.8 

Table 2. Retrieval results (%) for the 6-gram model over 
different query lengths. 

 

 

 
Figure 5: Graph showing the effect of query length on the 
top-N match correct retrieval accuracy for N = 1, 5, and 20 
(actual numbers given in Table 2). 
 

Alongside the N-best list scores, the Mean Reciprocal 
Rank (MRR) measure, which gives the average rank of the 
correct matches in the top-N retrieved results (by percen-
tage), are also calculated. Table 2 shows the retrieval re-
sults for the 6-gram model as it varies with different query 
lengths and different N-best list lengths. The numbers are 
graphed in Figure 5.  

One can see from the results that one of the main deter-
minants of retrieval performance is the length of the query. 
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Since the system retrieves similar songs based on the rela-
tive frequency of n-length subsequences, the longer the 
query, the more its n-gram model resembles that of the tar-
get song.  The number of distinct harmonic progressions 
that identifies the target song is also directly increased with 
query length.  
 

 Length of the query 
  15s 25s 35s full 

n = 6 37.6 41.6 42.9 51.6 
n = 5 36.4 40.2 40.9 49.7 
n = 4 32.5 35.4 37.1 43.4 
n = 3 28.8 35 36.2 42.3 
n = 2 22.6 30.2 33.1 40.2 

Table 3. Top-1 match retrieval accuracy (%) over different 
order n-gram models and different query lengths. 

 
Figure 6: Graph showing the effect of query length and n-
gram size on the top-1 match correct retrieval accuracy (ac-
tual numbers given in Table 3). 
 

Table 3 and Figure 6 present results for different length 
n-grams. It illustrates how the use of higher order n-grams 
(n>2) boosts the system’s performance. For all query 
lengths, larger n-grams yield better results. For all n, longer 
queries yield higher accuracies.  

 

 
Figure 7: Graph of retrieval accuracy ratios as n is in-
creased by one. 

 
Figure 7 shows the graph of the accuracy ratios (an indi-

cator of performance improvement) as the n-gram order is 
increased by one. All numbers are above one, indicating 

that performance improves by increasing the n-gram order. 
It is interesting to note that the ratio of the accuracy for n = 
6 over that for n = 5 converges between 1.03 and 1.05 for 
all query lengths. As shown by these numbers, the perfor-
mance difference between 5-grams and 6-grams is small 
with respect to accuracy. This may be because 5-grams be-
come sufficiently sparse for capturing the unique harmonic 
features of the music pieces. Thus, building 6-gram and 
higher models will likely not have a strongly positive effect 
on retrieval performance for this particular dataset. The tra-
deoff between computation time and retrieval accuracy 
should also be a consideration since building models and 
calculating perplexity for larger n-grams takes more com-
putational power and time.   

7. CONCLUSION 

In this work, a perplexity based audio music retrieval sys-
tem that is robust to instrumental variation is proposed. 
PCP features are extracted from overlapping frames and 
mapped to a 3-dimensional tonal space. A1-NN classifier 
decides the harmonic identity of the particular frame based 
on pre-defined positions of the 24 major and minor triads in 
the tonal space. Key normalization is performed. From the 
classifier output, repetitions are removed so as to focus on 
changes in the series of harmonies. From the resulting har-
monic sequence, n-gram statistics are acquired and a data-
base is constructed. Given a music query, the transcription 
is completed using the same strategy and the similarity be-
tween the transcribed input and the database models is 
computed using the perplexity measure. 

The algorithm is tested on a database of 2000 music 
pieces. While there is room for improvement, the results 
show that, for short length queries, the perplexity-based ap-
proach is capable of finding the target piece. The work 
could be strengthened by testing on a larger dataset with 
more versions of each song. 

To our knowledge, no other study in the literature re-
ports results from short length queries. Our motivation here 
is that royalty rights management systems usually work 
with short length queries and we would like to apply our 
system in such scenarios. The MRR and top-N best list 
scores suggest that a more fine-grained representation may 
be needed in order to more successfully retrieve the target 
piece. Ideally, we would like a retrieval system for which 
the target piece tops the results list, an important criterion 
for royalty rights management applications. 

Future work includes systematically isolating compo-
nents of our system for evaluation and improvements. We 
have used a straightforward feature extraction strategy, 
which should be compared against other methods. We can 
substitute chord labeling algorithms in the literature for the 
particular method used to extract harmonic labels to ex-
amine the impact of chord labeling technique on retrieval 
success. Other further work includes implementing multi 
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stage search algorithms, in order to improve search perfor-
mance with respect to time and accuracy.  
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