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ABSTRACT

We survey and evaluate popular audio fingerprinting sche-
mes in a common framework with short query probes cap-
tured from cell phones. We report and discuss results im-
portant for mobile applications: Receiver Operating Char-
acteristic (ROC) performance, size of fingerprints generated
compared to size of audio probe, and transmission delay if
the fingerprint data were to be transmitted over a wireless
link. We hope that the evaluation in this work will guide
work towards reducing latency in practical mobile audio re-
trieval applications.

1. INTRODUCTION
Audio fingerprinting provides the ability to derive a com-
pact representation which can be efficiently matched against
other audio clips. With smart phones becoming ubiquitous,
there are several applications of audio fingerprinting on mo-
bile devices. A common use case is query-by-example mu-
sic recognition: a user listens to a song in a restaurant, shop-
ping mall, or in a car, and wants to know more information
about the song. Shazam [1] and SoundHound [2] are ex-
amples of popular music recognition applications on cell-
phones. Other applications of audio fingerprinting on mo-
bile devices include copyright detection [4], personalized
entertainment and interactive television without extraneous
hardware [8].

Mobile query-by-example applications pose a unique set
of challenges. First, the application has to be low-latency
to provide users with an interactive experience. To achieve
low latency, the retrieval framework has to adapt to stringent
memory, computational, power and bandwidth requirements
of the mobile client. It is important that the size of the data
generated needs to be as small as possible to reduce network
latency, which is typically the bottleneck in 3G networks.
Second, the length of the audio required to get a match
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should be short for mobile applications (e.g., <10 seconds).
Current applications Shazam [1] and SoundHound [2] often
require >10 seconds for retrieval. For copyright detection,
one might use 30-60 second probes for retrieval [4], which
is not feasible for interactive mobile applications. Third, the
distortions introduced by cell phones tend to be more severe
than simple degradations like compression artifacts, time-
offsets, amplitude compression or structured noise present
in near-duplicate detection problems [4]. On mobile de-
vices, we need to be mindful of ambient noise present in
shopping malls or cafes, errors in sampling through tele-
phony equipment, low bit-rate voice compression and other
quality-enhancement algorithms that might be built into the
mobile device or introduced by the carrier network. In this
work, we evaluate the state-of-the-art in content-based au-
dio retrieval with focus on query-by-example mobile appli-
cations.

2. PRIOR WORK AND MOTIVATION

State-of-the-art audio retrieval applications use a set of low
level fingerprints extracted from the audio sample for re-
trieval. The fingerprints are typically computed on the spec-
trogram - a time frequency representation of the audio. Hait-
sma et al. [11] propose fingerprints based on Bark Frequency
Cepstrum Coefficients (BFCC). Highly overlapping frames
are considered to ensure that the query probe can be detected
at arbitrary time-alignment. Each fingerprint is 32 bits and
can be compared efficiently with Hamming distances. Ke
et al. [14] improve the performance of the fingerprinting
scheme in [11] using the AdaBoost technique from com-
puter vision. Baluja et al. [4] propose a scheme based on
wavelets. The overlapping spectrogram images are trans-
formed into a sparse wavelet representation and the pop-
ular min-hash technique [5] is used to obtain a 100 byte
fingerprint which can be compared directly with byte-wise
Hamming distances. In contrast to the three schemes above,
Wang [17, 18] proposes looking only at spectrogram peaks.

The authors are not aware of a comprehensive evaluation
of the different fingerprinting schemes in a common frame-
work. In contrast, several such evaluations exist for im-
age features in the computer vision community for content-
based image retrieval [15, 19]. Fingerprints developed for
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applications like query-by-humming and cover song detec-
tion are outside the scope of this paper. In particular, we
are interested in factors affecting practical query-by-exact-
example mobile applications. The questions that are most
critical for mobile applications are:

• How much fingerprint data does each scheme generate?

• How does the size of the fingerprint data compare to
the size of the compressed audio needed for accurate re-
trieval?

• What would the transmission delay be if the fingerprints
were transmitted over a typical 3G network?

• How discriminative are the different fingerprinting sche-
mes?

• How do the different schemes perform for really short(∼5
seconds) and noisy query probes captured by cell phones
?

• How does the performance of each scheme vary as a
function of probe length in the range of 5 to 15 seconds
typical for mobile applications?

3. CONTRIBUTIONS
We survey and evaluate popular audio fingerprinting sche-
mes in a common framework with short noisy query audio
probes captured from cell phones. We report and discuss re-
sults important for mobile applications: Receiver Operating
Characteristic (ROC) performance, size of fingerprints gen-
erated compared to size of audio probe, and transmission
delay if the fingerprint data were to be transmitted over a
wireless link. We hope that the evaluation in this paper will
provide key insights and guide us towards developing low
latency retrieval systems. In Section 4, we survey the differ-
ent audio fingerprinting schemes. In Section 5, we describe
the evaluation framework and provide experimental results.

4. SURVEY OF FINGERPRINTING SCHEMES
Before we survey popular audio fingerprinting schemes, we
discuss the typical pipeline for audio retrieval applications.
First, a set of fingerprints are extracted from the query song.
The fingerprints could be extracted at uniform sampling rate,
or only around points of interest in the spectrogram (e.g.,
spectrogram peaks in the case of Wang [18]). For mobile
applications, it is critical that individual fingerprints be ro-
bust against ambient noise, compared to the corresponding
database fingerprint.

Next the query is compared with a database of reference
tracks to find candidate matches. To avoid pairwise com-
parison between the query and all of the reference tracks,
the database is partitioned. The partitioning of the database
is precomputed for the database, and each partition is asso-
ciated with a list of database songs (also called an inverted
index). The partitioning on the database could be done by

direct hashing of the fingerprints (e.g., a 32 bit fingerprint
could be directly hashed into a table with 4 billion entries),
Locality Sensitive Hashing or techniques based on Vector
Quantization. This partitioning allows approximate-nearest-
neighbor-search as exact-nearest-neighbor search is infeasi-
ble in a database with billions of fingerprints. The inverted
file for each cell consists of a list of song IDs and the timing
offsets at which the fingerprints appear. The timing infor-
mation is used in the final step of the pipeline. Based on the
number of fingerprints they have in common with the query
probe from the inverted index, a short list of potentially sim-
ilar database songs is selected from the database.

Finally, a temporal alignment step is applied to the most
similar matches in the database. Techniques like Expecta-
tion Maximization [14], RANSAC [9], or Dynamic Time
Warping [6] are used for temporal alignment. In the case of
linear correspondence (i.e., the tempo of the database and
query songs are the same), Wang [18] proposes using a sim-
ple and fast technique that looks for a diagonal in the time-
vs-time plot for matching database and query fingerprints.
The existence of a strong diagonal indicates a valid match.
The temporal alignment step is used to get rid of false posi-
tives, and enables very high precision retrieval.

In this Section, we review three fingerprinting schemes in
detail: Ke [14], Baluja [4] and Wang [18]. In the interest of
space, we omit the scheme proposed by Haitsma [11] as the
fingerprint by Ke improves directly upon their scheme [14].
For a comparison of the two schemes by Ke and Haitsma,
interested readers are referred to [14]. For each scheme, we
first discuss the details of the scheme and the motivation
behind the approach, followed by system parameters sug-
gested by the authors that provide good trade-off between
accuracy and computational complexity.

4.1 Ke, Hoiem and Sukthankar

4.1.1 Description

Ke’s approach builds on popular classification techniques in
the computer vision community. Ke provides the important
insight that 1-D audio signals can be processed as conven-
tional images when viewed in the time-frequency spectro-
gram representation. The time-frequency spectrogram data
is treated as a set of overlapping images. To compute a com-
pact fingerprint on each image, the authors first train simple
AdaBoost classifiers based on box-filters, a technique pop-
ular in face detection. The training data for classification
is obtained by considering audio samples and their corre-
sponding versions degraded by noise. The output of each
classifier yields a binary value. E.g., each classifier outputs
a 1 or a 0 based on the differences between values aggre-
gated in two sub-rectangular regions of the spectrogram im-
age. The concatenated output of the set of classifiers is then
used as a fingerprint of the spectrogram image.
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4.1.2 System Parameters

Ke and Haitsma use the same set of parameters for comput-
ing the spectrogram. The spectrogram, obtained by Short
Term Fourier Transform (STFT), represents the power in
33 logarithmically-spaced frequency bands spaced 300 Hz
and 2000 Hz. Overlapping spectrogram images measured
over 0.372s windows are considered in 11.6 ms increments
(∼100 fingerprints/second). The short increments coupled
with large spectrogram images at each step are used to make
the scheme robust to sampling errors and small time-offsets.
For a 10 second probe, the scheme produces 860 finger-
prints. For the AdaBoosting step, 32 classifiers are chosen
out of a candidate list of 25000 filters. We use the training
data sets and code provided by the authors at [13]. Two fin-
gerprints are considered to be a match if they have a Ham-
ming distance <2, in the feature matching step of the re-
trieval pipeline.

4.2 Baluja and Covell
4.2.1 Description

Similar to Ke’s work, Baluja’s fingerprint is also inspired
from the image retrieval community. The pipeline for com-
puting “waveprints”(the term used by the authors to describe
their wavelet-based fingerprints) is illustrated in Fig. 1, and
in inspired from [12].

First, the authors compute overlapping spectrogram im-
ages using the same approach proposed by Ke. Next, the
spectrogram images are decomposed using multi-resolution
Haar wavelets. Wavelets are chosen due to their effective-
ness in the retrieval work presented in [12]. An image pro-
duces as many wavelet co-efficients as pixels. Next, the au-
thors retain only the top-t few wavelets, where t is chosen
to be much smaller than the size of the spectrogram im-
age. Next, the authors observe that the top-t wavelets are
sparse. To obtain a compact represenation, the authors only
retain the sign information (an approach also found effective
in [12]), and use the Min-Hash technique to generate a set
of p bytes that is used to represent the original spectrogram
image. Two spectrogram images can now be compared di-
rectly by computing the byte-wise Hamming distance of the
p bytes. For this approach to be effective, p needs to be
large (typically chosen to be 100). Nearest neighbor search-
ing in a 100 dimensional space is non-trivial. Hence, in the
final step, Locality Sensitive Hashing (LSH) is used to find
approximate-nearest-neighbor fingerprints in this space.

4.2.2 System Parameters

The authors optimize system parameters for accuracy and
computational complexity in [3, 4]. We use the parame-
ters recommended by the authors in [3]. Overlapping spec-
trogram images measured over 0.372 second windows are
considered in 0.09 second strides (∼10 fingerprints/second).
t = 200 top wavelets are considered. p is chosen to be

Figure 1. Pipeline for extracting waveprint features proposed by
Baluja [4]. Spectrogram images are represented as p bytes obtained from
Min-Hashing, which can be compared byte-wise directly for computing
similarity.

100, i.e., each fingerprint is represented as 100 bytes. For
LSH, the 100-byte fingerprint is divided into 25 equal 4-byte
bands. Each 4-byte band is stored as a 32 bit hash table. In
the feature-matching step, two fingerprints are considered to
be a match if their 4-byte representations match in at least
one of the 25 LSH bands.

Figure 2. Illustration of audio fingerprints proposed by Wang [17].
Triplet information ((t2 − t1, f1, (f2 − f1)) is quantized to form the fin-
gerprint.)

4.3 Wang
4.3.1 Description

While the schemes by Ke and Baluja use dense sampling
and compute fingerprints over fairly large spectrogram im-
ages, Wang proposes looking only at spectrogram peaks.
There are two reasons for choosing spectrogram peaks: First,
spectrogram peaks are more likely to survive ambient noise.
Second, spectrogram peaks satisfy the property of linear su-
perposition, i.e., a spectrogram peak analysis of music and
noise together will contain spectral peaks due to the music
and the noise as if they were analyzed separately [17]. The
fingerprinting scheme is illustrated in Fig. 2. For pairs of
peaks (t1, f1) and (t2, f2), the fingerprint is computed on
a triplet of ((t2 − t1), f1, (f2 − f1)). Each number in the
triplet is quantized and the concatenated value is treated as
the fingerprint.

4.3.2 System Parameters

For this scheme, we adapt the implementation provided by
Ellis [7]. We optimize over a parametric space, and choose
the following set of parameters. The frequency data in the
spectrogram is divided into 256 levels linearly. We con-
sider neighboring peaks in an adjacent frequency range of
64 units, and timing range of 64 units (sampling rate of the
audio signal is set to 8 KHz). The values ((t2−t1), f1, (f2−
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f1)) are represented as 6,8 and 6 bits respectively to ob-
tain a 20 bit fingerprint. For this data set, the 20 bit fin-
gerprint works better than a 32-bit fingerprint suggested by
Wang in [18] - note that over quantization could affect per-
formance adversely. We generate 20 fingerprints per second.

5. EXPERIMENTAL RESULTS
We use our own data set as we were not able to find any
publicly available data sets captured from mobile phones.
Most existing data sets introduce artificial distortions to the
audio (e.g., adding noise), and are not representative of dis-
tortions typical in the mobile scenario. We captured audio
clips on a Nexus One phone from a set of 39 songs played
on TV and from laptop speakers in noisy environments. In
our data collection, we tried to capture noise from differ-
ent ambient noise sources. Our song data set contains pop-
ular songs from artists like Lady Gaga, Michael Jackson,
Green Day, Avril Lavigne, to name a few. Each of these
clips is between 60 and 90 seconds long, which we divide
into non-overlapping 5, 10 and 15 second snippets to use
as query probes. This gives us a ground truth data set of
over a 1000 pairs of query probes and their corresponding
uncorrupted reference songs. All pairs between query and
reference, both positive and negative examples, are consid-
ered to generate Receiver Operating Characteristic (ROC)
curves.

5.1 Receiver Operating Characteristic
We evaluate the different fingerprinting schemes first after
the fingerprint indexing step, and subsequently, the temporal
alignment step.

5.1.1 Fingerprint Indexing

The inverted index on the database enables fast retrieval and
provides a shortlist of candidates to be considered for a more
extensive temporal alignment check. Each query fingerprint
votes for all the database fingerprints that it finds in the in-
verted index. The similarity between the database song and
query song is the number of fingerprints in common be-
tween them, based on the approximate-nearest-neighbor in-
dexing strategy. For Ke, the similarity measure is the num-
ber of fingerprints that have <2 Hamming distance. For
Baluja, the similarity measure is the number of fingerprints
that have >=1 matches in the 25 LSH bands. For Wang, the
similarity measure is the number of 20-bit fingerprints that
get hashed to the same bin.

We compute such a similarity score for matching and
non-matching pairs of ground-truth query and database songs,
for the different schemes. From these similarity scores, we
form two histograms, one for matching pairs and one for
non-matching pairs, as illustrated in Fig. 3. The overlap-
ping between the two histograms depends on the fingerprint-
ing scheme, and more importantly, the length of the query

probe. The longer the query probe, the lower the overlap be-
tween the two histograms, and the better the performance of
the scheme. Also, the more discriminative the fingerprint,
the lower the overlap between the two histograms. From
the two histograms we obtain a Receiver Operating Char-
acteristic (ROC) curve which plots correct match fraction
against incorrect match fraction. The different points on the
ROC curve are obtained by adjusting the similarity measure
threshold. The higher the ROC curve, the more effective the
retrieval system.
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Figure 4. ROC performance of different schemes. The number in brack-
ets is the length of the query probe in seconds. The performance of each
fingerprinting scheme increases as the query length increases. Baluja’s
scheme performs the best.

We plot the ROC performance of the three schemes in
Fig. 4. For each scheme, we note that the ROC performance
improves as the length of the query probe increases from 5
to 15 seconds, as expected. Typically, the returns are dimin-
ishing beyond 10 seconds. Baluja’s fingerprinting scheme
performs the best for all query probe lengths. The Min-
Hash based fingerprints (100 bytes each) are highly discrim-
inative and capture information over a longer time-duration
than Wang’s scheme.

The Wang fingerprints are far more compact - however,
the fingerprints are sensitive to small offsets in spectrogram
peak localization. The low dimensionality of the finger-
print makes it less discriminative, causing the scheme to re-
quire a longer probe to achieve a comparable performance to
Baluja’s scheme. Also, the lower dimensionality of the de-
scriptor implies that it does not scale well as the size of the
database grows. As the length of the query probe increases
to 15 seconds, Wang’s scheme catches up in performance.

Finally, we observe that Ke’s scheme performs poorly
for the short query probes that we are interested in. For
Ke’s scheme to catch up in ROC performance, much longer
probes would be required. The scheme also suffers due to
its dependence on the set of AdaBoost classifiers used to
generate the fingerprint. For our evaluation, we used the
AdaBoost classifiers provided by the authors in [13]. A
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Figure 3. Distribution of scores for matching and non-matching pairs of query probe and reference songs illustrated for the different fingerprinting schemes.
Ideally, we would like to have the matching pairs to have very high scores, and non-matching pairs to be exactly 0. The overlap in the distributions causes
errors in retrieval. This overlap depends on the discriminativeness of the fingerprinting scheme and also on the length of the query probe. Longer query probes
provide a better separation between the two distributions.

mismatch between training and test data can affect the per-
formance of this scheme adversely. We require robustness
against a broad range of mobile environments and noise
sources, and training a set of AdaBoost classifiers for dif-
ferent environments is not practical.

5.1.2 Temporal Alignment

Based on computational resources available, accuracy re-
quirements and the size of the database, retrieval systems
choose an operating point on the curve shown in Fig. 4.
E.g., state-of-the-art retrieval systems would typically op-
erate in the 80-90% True Positive Rate regime. At the oper-
ating point, we apply the Temporal Alignment (TA) scheme
proposed by Wang to get rid of false positives. It is rela-
tively easy to achieve high precision for audio retrieval ap-
plications. By requiring a minimum number of fingerprint
matches to satisfy TA, we can get rid of most false positives.
We set the minimum number of temporally aligned matches
to 5 for this experiment. We plot the percentage of queries
passing the temporal alignment check as a function of query
probe length in Fig. 5. Again, we observe Baluja’s scheme
performs the best, followed by Wang and Ke respectively.
The performance for each scheme improves as the length
of the query probe increases. We conclude that highly dis-
criminative fingerprints help significantly for short 5 second
query probes. Next, we study the amount of data generated
for each fingerprinting scheme.
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Figure 5. Recall as a function of query probe length for different sc-
hemes. Precision is 100% as the temporal alignment step eliminates false
positives.

5.2 Data Size and Transmission Delay

The different fingerprinting schemes generate different amo-
unts of data. Here, we present results for a 10 second probe,
as 10 second probes provide a balance between accuracy and
latency for all three schemes. Ke’s scheme produces 729
4-byte fingerprints, Baluja’s scheme produces 87 100-byte
fingerprints, and Wang’s scheme produces 587 20-bit finger-
prints on average for 10 second probes. The amount of data
generated for the different schemes is shown in Fig. 7. We
compare the size of fingerprint data to the size of a 10 second
Vorbis compressed audio at 64 kbps (80 KB). We observe
that the size of fingerprint data is significantly lower than
the size of the compressed audio for all fingerprinting sche-
mes (<10 KB). This motivates computing the fingerprints
on the device, whenever possible. We note that Wang’s
scheme produces less data than Baluja’s or Ke’s scheme.
For a fair comparison between the different schemes, we
plot the bitrate-Equal Error Rate (EER) performance in Fig-
ure 6. We note that the reduction in data for Wang’s scheme
comes at the cost of ROC performance shown in Fig. 6.

If fingerprinting were to be done on the device, how long
would the transmission delay be for sending the fingerprint
data? The transmission delay would depend on the wireless
network used: 3G or WLAN (Wireless LAN). WLAN sys-
tems provide much higher bandwidth compared to 3G, and
transmission delay is negligible even for large packet sizes.
Here, we present transmission delay numbers only for a 3G
connection, as it is the most prevalent on mobile phones to-
day [16]. For network transmission delay experiments, we
use the data presented in [10, 16]. The authors conduct ex-
periments in an AT&T 3G wireless network, with a total of
more than 5000 transmissions at locations where a typical
audio retrieval system would be used.

We present the time it would take to transmit fingerprint
data for the different schemes in Fig. 7(b). Transmitting fin-
gerprint data takes in the order of a few seconds, while trans-
mitting the compressed audio could take tens of seconds,
based on the wireless link. Note that the delay numbers
shown here only represent the data transmission delay for
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Figure 6. Equal Error Rate (EER) vs. bitrate tradeoff. Baluja scheme
works well at high bitrates, while Wang’s scheme works well at low bi-
trates.

different fingerprinting schemes. The end-to-end system la-
tency would depend on the streaming protocol, the length of
query probe considered, transmission delay and processing
delay on the server. Based on the experimental results pre-
sented here and in [10], we would expect the transmission
delay to be the bottleneck in 3G networks, which motivates
computing fingerprints on the device.
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Figure 7. Fig.(a) shows size of data generated by different schemes.
Fig.(b) shows the associated transmission delay if the data were to be trans-
ferred over a 3G network. The data and transmission delay numbers are
presented for 10 second query probes. Data for 5 and 15 second probes can
be extrapolated linearly.

Finally, we draw some parallels between mobile image
retrieval and audio retrieval. We note that Ke and Baluja
were both inspired by work in computer vision literature.
Interest point detectors and descriptors have been well stud-
ied in computer literature: readers are referred to the sur-
vey papers [15, 19]. What has pushed the field forward is
the availability of good image and patch level data sets that
capture the distortions (e.g., perspective and lighting in im-
ages) that interest point detectors and descriptors need to
be robust against. The availability of similar ground-truth
data sets will be useful for designing interest point detectors
and descriptors for audio retrieval. Spectrogram peaks pro-
posed by Wang is one example of interest point detection,
but other schemes need to be explored. Interest point de-
tectors are the first step in the pipeline, and improvements
here could affect blocks further down the pipeline. Next,
we note that the best descriptors in the vision literature are
high-dimensional and capture salient characteristics in a lo-
cal neighborhood around the interest point. In the case of
audio retrieval, we need descriptors around interest points to

be robust against small timing offset errors, and distortions
introduced by ambient noise. Both interest point detectors
and descriptors for audio retrieval in highly noisy environ-
ments are interesting areas for future work. We conclude by
noting that techniques and algorithms developed in recent
image retrieval literature can be used to further improve ef-
ficiency and performance of audio retrieval systems.

6. CONCLUSION
We perform a thorough survey and evaluation of popular
audio fingerprinting schemes in a common framework. We
report and discuss results important for mobile applications:
Receiver Operating Characteristic (ROC) performance, size
of fingerprints generated compared to size of the compressed
audio sample, transmission delay if the fingerprint data were
to be transmitted over a 3G wireless link and computational
cost of fingerprint generation.
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