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ABSTRACT

The purpose of this paper is to address several aspects of
music autotagging. We start by presenting autotagging ex-
periments conducted with two different systems and show
performances on a par with a method representative of the
state-of-the-art. Beyond that, we illustrate via systematic
experiments the importance of a number of issues relevant to
autotagging, yet seldom reported in the literature. First, we
show that the evaluation of autotagging techniques is frag-
ile in the sense that small alterations to the set of tags to be
learned, or in the set of music pieces may lead to dramati-
cally different results. Hence we stress a set of methodologi-
cal recommendations regarding data and evaluation metrics.
Second, we conduct experiments on the generality of auto-
tagging models, showing that a number of different methods
at a similar performance level to the state-of-the-art fail to
learn tag models able to generalize to datasets from different
origins. Third we show that current performance level of a
direct mapping between audio features and tags still appears
insufficient to enable the possibility of exploiting natural tag
correlations as a second stage to improve performance.

1. INTRODUCTION

Music autotagging refers to the task of automatically clas-
sifying music audio excerpts with respect to a number of
high-level concepts (the “tags”) from potentially very di-
verse music facets such as Emotion, Musical instruments,
Genre, Usage, etc. In the literature, a number of approaches
to the task have been proposed that build upon previous
work in genre and artist classification, where a direct map-
ping is sought via machine learning models between low-
level features computed on short audio signal frames and
tags [2, 4, 10, 11]. These approaches are tailored to the fact
that the task is more difficult than genre classification in that
the number of classes is usually much higher (genres corre-
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Figure 1. Generic 2-stage music autotagging framework
(training of learning algorithms not represented; audio fea-
ture extraction can be statistics or time series).

spond in fact to one among many facets), and models must
account for the possibility that multiple labels usually apply
to a given excerpt. Music tags are often correlated (for in-
stance, Genre tags often co-occur with Instruments or Emo-
tion tags), this is often the rationale behind implementing
a 2-stage architecture, where a second stage of processing,
modeling tag co-occurence relationships, can “correct” [8]
the imperfect tag predictions of the first stage (see illustra-
tion in figure 1). A number of authors report on perfor-
mance improvements with this procedure over the one-stage
approach [1, 6–9].

This paper aims at demonstrating via systematic experi-
ments the relevance of a number of music autotagging issues
that we believe are, to the best of our knowledge, only ad-
dressed superficially in current literature. After presenting
the data and systems used and reporting on initial experi-
ments in sections 2 and 3, we address in section 4 the notion
of “fragility” of evaluation methodologies and stress a num-
ber of methodological recommendations. In section 5, we
address the issue of generality of autotagging models, and
in section 6, we address limitations of exploiting tag corre-
lations in a second processing stage. We finally propose a
discussion on these issues and directions for future work in
section 7.

2. DATA AND SIGNAL FEATURES

In this paper we use two datasets with tag annotations made
available publicly to the community by fellow researchers
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and on which a number of papers have reported results.
CAL500. The Computer Audition Lab 500 (CAL500)

dataset (http://cosmal.ucsd.edu/cal/projects/AnnRet/)
is made up of 500 Western popular song excerpts of differ-
ent lengths. Excerpts annotations are among a set of 174
tags.

Magnatagatune. The Magnatagatune dataset (http://
tagatune.org/Magnatagatune.html) consists of 21642 ex-
cerpts of length 30 s from 230 different artists. Excerpts an-
notations are among a set of 188 tags. Some pre-processing
was applied to yield a cleaner dataset, referred to as Mag-
tag5k (see section 4.2 for more details), on which we ran
most of the experiments below.

Other datasets. We made use of two other publicly
available datasets with only genre annotations: the Latin
Music Dataset (LMD, http://www.ppgia.pucpr.br/˜silla/
lmd/index.html) and the ISMIR04 dataset (http://ismir
2004.ismir.net/genre_contest/index.htm) to evaluate the
generalization capacity of our autotagging systems (see sec-
tion 5).

Features. We used MARSYAS to extract 16 audio fea-
tures from 46ms frames of the audio signals with no overlap.
The features are: the spectral centroid, rolloff frequency,
spectral flux, and 13 MFCCs, including MFCC0. These fea-
tures as the same ones used in [7].

3. AUTOTAGGING SYSTEMS

3.1 Benchmark

In order to better compare our experiments with previous
literature and to facilitate the reproducibility of our experi-
ments, we use as a benchmark the system proposed in [7],
which is available under GPL in MARSYAS. 1 Performance
of the Benchmark have been reported in the 2010 MIREX
evaluation. In this system, frame features are collapsed in
a two steps process (texture windowing and computation of
global mean and standard deviation) into a 64-dimensional
feature vector for the whole audio excerpt [7]. This system
implements an architecture with two stages of processing,
illustrated in figure 1. A multiclass SVM classifier is used
in both stages. We report below on the performance of using
just the first stage of processing alone, or the whole system.

3.2 Alternative systems

1. External multiclass SVM in both stages: This sys-
tem (referred to as Sys1) is a 2-stage system similar
to the Benchmark, with the difference that it external-
izes the learning algorithm and directly uses the lib-
SVM software package (http://www.csie.ntu.edu.

1 The authors are grateful to Ness & Tzakenakis for kindly providing
and commenting the code used for these experiments.

tw/˜cjlin/libsvm). The other difference is that nor-
malization of the data is done via the libSVM package
and not in the MARSYAS code.

2. One-stage Markov models-based classifier: This ap-
proach consists of using the method for genre classifi-
cation based on Markov models previously described
in [5]. In the context of autotagging, for each tag a
pair of models are estimated and used to assign a tag
to a piece of audio. This approach is referred to as
Sys2.

3.3 Autotagging performance

CAL500 Magtag5k
Benchmark 0.452|0.245 0.312|0.083

Sys1 0.464|0.269 0.423|0.176
Sys2 0.480|0.246 0.411|0.171

Table 1. F-scoreg | F-scorept for Benchmark, Sys1, and
Sys2 on CAL500 and Magtag5k. Evaluation methodology
described in section 4.2.

Table 1 presents a comparison of the performance achieved
with the methods described previously and the performance
obtained with the Benchmark. The performance measure is
the F-score computed on global classification rates (denoted
F-scoreg) and the F-score based on the average per-tag clas-
sification rates (denoted F-scorept, see section 4.1 for fur-
ther methodological considerations). For both datasets Sys1
and Sys2 perform better than the Benchmark albeit in small
proportions in some cases. The Benchmark was chosen in
order to have a fair point of comparison to evaluate our ap-
proaches: it is a recent contribution that rates among the best
in the latest MIREX evaluation (2010).

Other examples using the same datasets can be found in
the literature: Using CAL500, Turnbull et al. [11], Hoffman
et al. [4] and Mahieux et al. [2] obtain F-scorespt equal to
0.20, 0.21 and 0.14 respectively but the evaluation is based
on a ranking of the first 10 most probable tags and thus
not comparable with our results. Seyerlehner et al. [9] ob-
tains F-scoreg = 0.50 and F-scorept = 0.30 on CAL500
and 0.42 | 0.22 with the Magnatagatune dataset thus slightly
above our results. Zhao et al. [12] achieve F-scorept = 0.31
on CAL500 but tags that were not recognized in the dataset
were ignored in the evaluation (using this metric we were
able to achieve F-scorept = 0.33 using Sys2). Similarly,
Miotto et al. [6] obtain a F-Scorept = 0.30 on CAL500 but
less frequent tags were removed which, as we will see in the
next section, affects significantly the results. To summarize,
we claim that the approaches presented in this paper are on
a par with the state-of-the-art as described in the recent lit-
erature.
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4. ISSUE 1: METHODOLOGICAL ISSUES IN
EVALUATING AUTOTAGGING SYSTEMS

4.1 On evaluation measures

Evaluation for autotagging systems is mostly based on In-
formation Retrieval measures, such as accuracy, precision,
recall, F-score, etc. These measures are generally computed
on a per-tag basis, separately for each tag and then averaged
across tags, or globally across the whole dataset. Music
datasets typically have a strong imbalance in tag distribu-
tions, and results on a per-tag or global basis can differ sig-
nificantly. This imbalance drives global scores artificially
high. The reason is simple: since the most common tags
account for a large percentage of all annotations, classifiers
that predict these tags well start off with high global scores.
Figure 2 shows the F-scores on CAL500 for Sys1 and Sys2,
when the most frequent tags (left) or the least frequent tags
(right) are removed from the dataset (tests with Magtag5k
had a similar outcome). Results confirm the dependence
of global scores on the most common tags [2, 6, 11]: the
left plot shows a sharp decrease in F-scoresg when the top
tags are removed (F-scorespt also decrease, albeit relatively
less). This indicates that the most frequent tags are on av-
erage better classified and have a substantial effect on the
overall performance. This is also seen in figure 6, where the
most common tags (the ones represented by larger circles)
have high scores, and the least frequent tags low scores. On
the other hand, figure 2 (right plot) also shows that the least
frequent tags, with lower classification rates, have little im-
pact on global scores but have a dramatic effect on per-tag
scores, a fact that is most often ignored. We therefore stress
the importance when reporting results on reference data to
include both global and per-tag metrics, and to consider the
influence of both the least and most frequent tags. For in-
stance, in [6] the evaluation is obtained excluding the 77
least frequent tags, which in our systems would result in a
increase in the F-scorespt above 10%.
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Figure 2. F-scoreg and F-scorept on CAL500 for Sys1 and
Sys2 autotaggers, as the most frequent (left) or the least fre-
quent tags (right) are removed.

Another important factor that can influence performance
scores is how thoroughly the songs in the dataset are an-
notated. CAL500 has a high number of tags per song (an
average of 26 tags per song): a trivial classifier (i.e. always
predicting all tags) has a precision of≈ 15% (with 100% re-
call). This “starting point” yields a F-scorept of 26%, which
is misleadingly high, and almost on a par with other results
reported in the literature (see the F-scorespt reported in sec-
tion 3.3). Note that in this case the F-scoreg equals F-scorept

and is much lower than what is reported in the literature,
hence a good indicator of the system’s sub-optimal perfor-
mance.

The choice of evaluation measure can hinder compar-
isons between different methods and can also conceal sub-
optimal performances. It is therefore important to report
both per-tag and global scores, and ideally, also document
how the individual tag performances are related to the a pri-
ori tag frequencies in the datasets used.

4.2 On data and evaluation methodology

Depending on the data gathering method, tag-annotated data-
sets can present several problems [11] such as misspelling,
impossible combinations of values, diverse types of noise,
etc. However, only few papers consider these potential prob-
lems when reporting on autotagging experiments with the
CAL500 or Magnatagatune datasets.

The Magnatagatune dataset reveals a significant number
of problems with annotation: (1) synonymy: we merged a
number of tags (e.g. “clasical”, “classical” and “classic”),
(2) trivial cases: we removed excerpts with tags such as
e.g. “silence”, (3) antonymy: we removed tag attributions
of an excerpt when they were not compatible (e.g. having
both “drums” and “no-drums” tags, or “fast” and “slow”),
(4) extreme sparseness: we removed excerpts with no tags,
and (5) duplication: many excerpts in the Magnatagatune
dataset are segments of the same original piece and have
different tag annotations, we kept those segments with the
maximum number of tags and removed the other segments.
After pre-processing the Magnatagatune dataset as detailed
above, the remaining data, referred henceforth as Magtag5k,
consists of 137 tags, 5259 excerpts from 230 artists. CAL500
did not require such pre-processing.

To avoid overfitting the data in building autotagging mod-
els, the literature fosters a number of evaluation methodolo-
gies, e.g. holdout validation, S-fold cross-validation, etc.
However, it seldom takes into account artist filtering in the
definition of the training and test datasets, a method whose
importance has been demonstrated in music similarity re-
search [3] (over-optimistic results can be achieved when the
same artists are present in both sets). Taking this additional
factor into account, the evaluation methodology should agree
with a number of constraints related to the statistics of the
data, i.e. the number of folds should not be higher than the
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number of artists per tag, nor than the number of excerpts
per tag. For instance, constraints from CAL500 favors a
2-fold cross-validation or holdout validation (instead of 10-
fold cross-validation [11]). We report results with the lat-
ter (with a 50% split). In Magtag5k, some tags have few
instances, from few artists (e.g. tag “water” has 16 songs
from 6 artists). Thus, we chose to set the maximum number
of folds to 3 (ensuring at least 2 different artists per tag per
fold) and report on results with 3-fold cross-validation. We
can clearly see in table 2 that very different results are ob-
tained when considering data and methodology issues dis-
cussed here and when not. To facilitate reproducible re-
search, the whole Magtag5k data pre-processing and result-
ing data are available 2 .

5. ISSUE 2: WHAT ARE WE REALLY LEARNING?

In this section we present results of a set of experiments that
were conducted in order to evaluate the extent of the results
obtained with the various systems. The objective was to
evaluate models’ ability to generalize when used with data
from different origins. We selected songs annotated with 35
tags common to both Magtag5k and CAL500. 3 Figure 3
shows for both the Benchmark (left) and Sys2 (right) two
F-scores for each of the 35 tags, these F-scores are obtained
with Magtag5k as test set, but with two different training
sets for building models, either Magtag5k or CAL500. 4

The F-score obtained with CAL500 is shown on the hor-
izontal axis while the F-score obtained with is Magtag5k
shown on the vertical axis. On these plots a model that per-
form equally well when trained with either datasets would
be on the diagonal, those performing worse when trained
with CAL500 data are above the diagonal.

When comparing performance obtained on the same test
set (Magtag5k) we observe much lower performance for
models based on CAL500 training than for those trained
with Magtag5k. This observation is valid for the Bench-
mark, Sys1 (not shown here) and Sys2. Nearly every point
is above the diagonal. Sys2 seems to perform slightly bet-
ter than other systems in terms of generalization but still the
performance is much lower for models trained with CAL500:
only three tags obtain a relatively high F-score for both train-
ing sets (man.singing, electro, and female.singing).

Models were also tested on the LMD and the ISMIR04
genre classification datasets. These two datasets were not
created for autotagging tasks therefore no ground truth is
available so our analysis is based on tag assignment fre-
quency. We processed the music pieces from these datasets
with Sys1 models trained with CAL500 and Magtag5k. Fig-

2 Please follow this link: http://tl.di.fc.ul.pt/t/
magtag5k.zip.

3 Hence reducing Magtag5k to 4549 songs.
4 Note that artist filtering and non-overlap of training and test data are

observed for Magtag5k.
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Figure 3. F-score on Magtag5k test set for Sys2 (right) and
Benchmark (left) autotaggers, either trained with CAL500
(x-axis) or Magtag5k (y-axis).

0

0.5

1

C
A

L
50

0

ac
ou

st
ic

.g
u
it
ar

b
as

s
d
ru

m
s

el
ec

tr
ic

.g
u
it
ar

fe
m

al
e.

si
n
g
in

g
h
or

n
s

m
a
n
.s
in

gi
n
g

or
ga

n
p
ia

n
o

sa
x

st
ri
n
gs

sy
n
th

tr
u
m

p
et

v
io

li
n
s

d
u
et

ta
lk

in
g

ac
ou

st
ic

am
b
ie

n
t

b
lu

es
co

u
n
tr

y
el

ec
tr

o
fo

lk
fu

n
k

h
ip

.h
op

ja
zz

p
op

ro
ck

w
or

ld
p
u
n
k

so
ft

.r
o
ck

sa
d

so
ft

w
ei

rd
m

el
lo

w
h
ap

p
y

0

0.5

1
M

ag
ta

g5
k

0

0.5

1

L
M

D

0

0.5

1

IS
M

IR

 

 

Training set: CAL500 Training set: Magtag5k

Figure 4. Proportion of music pieces for which each tag
was assigned in the corresponding test set (rows). Sys1.

ure 4 shows the proportion of songs from a given test set to
which each tag was assigned. Each color/shade corresponds
to a training set and each row to a test set. We can see for ex-
ample that when testing with CAL500 (first row) and train-
ing with Magtag5k (orange, light shade) nine tags are as-
signed to all songs. When testing with Magtag5k (second
row), models trained with CAL500 (blue, dark shade) rec-
ognize very few tags. When testing on LMD and ISMIR04
we observe a strange phenomenon: the proportion of music
per tag is almost the same for both datasets and for all tags.
This indicates a strong bias on the models side and a weak
power of generalization.

Figure 5 shows the proportion of music pieces for which
each tag was selected when trained with Magtag5k and tested
with both LMD and ISMIR04 datasets (different colors) for
two modeling techniques (different rows). The first row
confirms what was seen on figure 4: with Sys1 the pro-
portion of songs per tag is almost the same independently
of the test set. When Sys2 is used, a different anomaly is
observed: very few tags are recognized and these tags are
over-represented. Moreover the same tags seem to be over-
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Figure 5. Proportion of music pieces for which each tag
was assigned for two kinds of models (rows) and two test
sets (colors).

represented in both datasets. When comparing the two rows
of the plot, we can see that the two autotagging techniques
have a very low level of agreement, for both test sets.

These experiments show that models obtained with au-
totagging techniques at the level of the state-of-the-art show
very limited ability to generalize to new datasets and that the
level of performance observed on a single finite dataset is
somewhat misleading. Current autotagging techniques are
still far from the long-term goal that is to allow automatic
tagging of sounds independently of their origin.

6. ISSUE 3: EXPLOITING TAG CORRELATIONS
IN A SECOND PROCESSING STAGE

Magtag5k 2-fold
Bench. stage 1 0.409|0.164 0.342|0.126

Bench. both stages 0.312|0.083 0.347|0.136

Sys1 stage 1 0.411|0.165 0.341|0.127
Sys1 both stages 0.423|0.176 0.347|0.136

Table 2. Comparison of F-scoreg|F-scorept for differ-
ent configurations of the Magnatagatune dataset: Mag-
tag5k, and 2-fold cross-validation over unprocessed Mag-
natagatune dataset (no artist filter).

In table 2, we compare Sys1 against the Benchmark, con-
sidering either stage 1 only or both stages. The first column
reports results on Magtag5k while the second reports results
with the data and evaluation methodology from [7]: 2-fold
over the whole Magnatagatune data, without artist filtering.
Looking at results for the Benchmark, we can see that al-
though results of the first stage (first row, second column)
are very similar to those published in [7], the second stage in
fact impairs results from the first stage only, i.e. the opposite
phenomenon than [7]. Similar improvements for the second
stage as those published can only be found when consider-
ing unadapted evaluation methodologies (e.g. no artist filter)
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Figure 6. Performance of stage 1 vs both stages, Magtag5k.
Individual tag F-scores are represented by circle centers. x-
axis are the stage 1 F-scores, and y-axis both stages. Radius
are proportional to corresponding tag frequency.

and noisy (see problems 1 to 4 in section 4.2) and redundant
data (see problem 5), as illustrated in the second column.

Results also show that the second stage of Sys1 does ap-
pear to bring a small improvement on the first stage. How-
ever, we can gain more insights on the actual effect of the
second stage by looking at figure 6 which illustrates the dif-
ference in tag’s individual F-scores between using only one
stage of processing vs using both stages. For a given data
point (i.e. a particular tag) to lie above the diagonal means
that the second stage improves results, while below the diag-
onal means impairing results from stage 1. For the Bench-
mark (left plot), the decrease in overall performance can be
seen on almost all tags individually. For Sys1 (middle plot),
if average results are better with both stages, we can see that
not all tags are affected in the same way by the second stage:
some improve (are above the diagonal) while others do not.
In our opinion, this distribution around both sides of the di-
agonal indicates that no clear pattern of improvement can be
identified with the 2-stage procedure.

A possible reason for the inability of the system to take
advantage of existing tag correlations may reside in the na-
ture of the second stage classifier. Hence we experimented
a different option for the second stage: a pool of binary
SVMs (one per tag) [8]. These experiments are restricted
to the particular task of tag co-occurrence modeling, i.e. we
compare classifiers that process correct input (we are not
evaluating the full system here, only what can serve as its
second stage). Results show that binary SVMs are clearly
better at the task than a multiclass SVM: in three-fold cross-
validation on Magtag5k the former reaches a F-scoreg and
F-scorept of 0.839 and 0.822 respectively while the latter
reaches 0.581 and 0.567. A corollary of the above is that
the second stage may fail precisely because it is trained on
data that only represents estimations of these correlations
(and relatively bad ones, as indicated by the performance
of stage 1). Hence we modified Sys1 with binary SVMs in
stage 2, trained with true tag annotations instead of proba-
bility estimations from stage 1. We refer to this system as
Sys3. Overall, Sys3 reaches F-scoreg and F-scorept of 0.411
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and 0.162, therefore slightly below the performance of Sys1
and comparable to using only stage 1 (see table 2). However,
when looking at the case of individual tags, i.e. rightmost
plot of figure 6, we can spot an interesting pattern: improve-
ments with stage 2 seem higher for tags with better perfor-
mance in stage 1. In other words, this seems to indicate that
a minimum performance in stage 1 should be expected for a
given tag —i.e. for its probability estimation— to be useful
in a second stage. Although proving this claim will require
more data, we wish to argue here that this pattern appears
as a logical and desirable property for an autotagging sys-
tem, and it indicates clear directions for future work: e.g.
improving stage 1; tailoring stage 2 classifier to a selection
of particular tags (e.g. the most reliable, the most “influen-
tial” [1]) instead of processing all tags the same way.

7. DISCUSSION

The experiments described in this paper show that diverse
techniques on a par with the state-of-the art in music auto-
tagging fail to achieve their goal in several aspects. It was
shown that autotagging tasks must be evaluated more care-
fully than what is usually done, that changing the set of tags
or altering the evaluation measure (per tag vs global F-score)
may dramatically alter the results, sometimes hiding weak-
nesses. It was also shown that current techniques used for
autotagging fail the generalization test. Finally it was shown
that the performance achieved with these techniques is not
sufficient to be able to take advantage of the correlations be-
tween tags. Research in music genre classification and mu-
sic similarity has seen recent progresses but its adaptation to
autotagging shows severe drawbacks. What are the causes
of these relatively negative results?

It is our opinion that some key differences between auto-
tagging and genre classification should be given more em-
phasis in autotagging research. In particular with regards
to data recollection and annotation [10]. Tags can corre-
spond to music facets more subjective than music genre. Or
they can have multiple meanings, as in the case of Instru-
ment tags: a song tagged “piano” can mean e.g. that piano
is salient all over the song, or that there is a piano accom-
panying (but it may be relatively quiet), or that some parts
have piano (but may have a short temporal span). In au-
totagging the procedure used to obtain ground truth differs
from one dataset to another, which results in a lack of con-
sistency. Public datasets are limited in quantity and in many
cases present errors or incompleteness. Also, where datasets
for genre classification are usually limited to 10-20 genres,
it is common to deal with hundreds of tags. This is not a
problem per-se but in these conditions it is much more dif-
ficult to achieve good results for every tags and to follow
good practices (artist filtering, S-fold cross validation). It
is hard to build models based on extremely unbalanced data

but it is even harder if the ground truth lacks consistency.
Future work will include seeking for improvements in terms
of generalization using recently published datasets like the
Million Songs or CAL10k datasets.

This paper’s results and previous observations lead us to
propose some directions regarding future work in music au-
totagging: Different processing could be applied depending
on categories of tags: (1) 2-stage architectures may be ben-
eficial for some tags (e.g. tags with reasonable performance
might help build models for other tags) but not for others
(discussion in [1] is also insightful on this matter). (2) Tag
models could be differentiated according to temporal char-
acteristics: models for tags that correspond to a short time
span should be based on local features whereas tags that cor-
respond to whole songs should use global features.
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